Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:33:13.808Z Has data issue: false hasContentIssue false

Insights into Holocene megafauna survival and extinction in southeastern Brazil from new AMS 14C dates

Published online by Cambridge University Press:  20 January 2017

Alex Hubbe*
Affiliation:
Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP. 05508–090, Brazil Instituto do Carste, Rua Barcelona 240/302, Belo Horizonte, MG. 30360–260, Brazil
Mark Hubbe
Affiliation:
Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, Calle Gustavo Le Paige 380, San Pedro de Atacama, 141–0000, Chile
Ivo Karmann
Affiliation:
Departamento de Geologia Sedimentar, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508–900, São Paulo, SP, Brazil
Francisco W. Cruz
Affiliation:
Departamento de Geologia Sedimentar, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508–900, São Paulo, SP, Brazil
Walter A. Neves
Affiliation:
Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP. 05508–090, Brazil
*
*Corresponding author at: Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP. 05508–090, Brazil. Fax: + 55 11 30917553. E-mail address:[email protected] (A. Hubbe).

Abstract

The extinction of late Quaternary megafauna in South America has been extensively debated in past decades. The majority of the hypotheses explaining this phenomenon argue that the extinction was the result of human activities, environmental changes, or even synergism between the two. Although still limited, a good chronological framework is imperative to discuss the plausibility of the available hypotheses. Here we present six new direct AMS 14C radiocarbon dates from the state of São Paulo (Brazil) to further characterize the chronological distribution of extinct fauna in this part of South America. The new dates make evident that ground sloths, toxodonts, and saber-toothed cats lived in the region around the Pleistocene/Holocene transition, and in agreement with previous studies, also suggest an early Holocene survival for the ground sloth Catonyx cuvieri. Taken together with local paleoclimatic and archaeological data, the new dates do not support hunting or indirect human activities as a major cause for megafauna extinction. Although more data are required, parsimony suggests that climatic changes played a major role in this extinction event.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, A.G.M., Feathers, J.K., Arroyo-Kalin, M., and Tizuka, M.M. Lapa das Boleiras Rockshelter: stratigraphy and formation processes at a paleoamerican site in Central Brazil. Journal of Archaeological Science 35, (2008). 31863202.Google Scholar
Auler, A.S., Piló, L.B., Smart, P.L., Wang, X., Hoffmann, D., Richards, D.A., Edwards, R.L., Neves, W.A., and Cheng, H. U-series dating and taphonomy of Quaternary vertebrates from Brazilian caves. Palaeogeography, Palaeoclimatology, Palaeoecology 240, (2006). 508522.Google Scholar
Barnosky, A.D., and Lindsey, E.L. Timing of quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, (2010). 1029.Google Scholar
Barreto, C.N.G.B., de Blasiis, P.A.D., Dias Neto, C.M., Karmann, I., Lino, C.F., and Robrahn, E.M. Abismo Ponta de Flecha: um projeto arqueológico, paleontológico e geológico no médio Ribeira de Iguape, São Paulo. Revista de Pré-História 3, (1982). 195215.Google Scholar
Borrero, L.A. Extinction of Pleistocene megamammals in South America: the lost evidence. Quaternary International 185, (2008). 6974.CrossRefGoogle Scholar
Borrero, L.A. The elusive evidence: the archeological record of the South American extinct megafauna. Haynes, G. American megafaunal extinctions at the end of the Pleistocene. (2009). Springer, New York. 145168.Google Scholar
Cartelle, C. Pleistocene mammals of the cerrado and caatinga of Brazil. Eisenberg, J.F., and Redford, K.H. Mammals of the Neotropics - The Central Neotropics. (1999). University of Chicago Press, Chicago. 2746.Google Scholar
Cartelle, C., and De Iuliis, G. Eremotherium laurillardi (Lund) (Xenarthra, Megatheriidae), the Panamerican giant ground sloth: taxonomic aspects of the ontogeny of skull and dentition. Journal of Systematic Palaeontology 4, (2006). 199209.Google Scholar
Castro, M.C., and Langer, M.C. The mammalian fauna of Abismo Iguatemi, southeastern Brazil. Journal of Cave and Karst Studies 73, (2011). 8392.CrossRefGoogle Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F.W., and Edwards, R.L. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39, (2012). 10451062.Google Scholar
Cione, A.L., Figini, A.J., and Tonni, E.P. Did the megafauna range to 4300 bp in South America?. Radiocarbon 43, (2001). 6975.Google Scholar
Cione, A.L., Tonni, E.P., and Dondas, A. The broken zig-zag: Late Cenozoic large mammal and turtle extinction in South America. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” 5, (2003). 119.CrossRefGoogle Scholar
Cione, A.L., Tonni, E.P., and Soibelzon, L. Did humans cause the late Pleistocene-early Holocene mammalian extinctions in South America in a context of shrinking open areas?. Haynes, G. American megafaunal extinctions at the end of the Pleistocene. (2009). Springer, New York. 125144.Google Scholar
Collet, G.C. Novas informações sobre os sambaquis fluviais do Estado de São Paulo. Arquivos do Museu de História Natural da UFMG 10, (1985). 311324.Google Scholar
Collet, G.C., and Loebl, E. Informações sobre os sambaquis fluviais do Estado de São Paulo. Anuário Staden (Estudos Brasileiros) 36, (1988). Fundação Martius (Inst. Hans Staden), São Paulo.Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., and Viana, O. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, (2005). 6366.Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., and Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248, (2006). 494507.Google Scholar
Cruz, F.W., Wang, X., Auler, A., Vuille, M., Burns, S.J., Edwards, R.L., Karmann, I., and Cheng, H. Orbital and millennial-scale precipitation changes in Brazil from speleothem records. Vimeux, F., Sylvestre, F., and Khodri, M. Past climate variability in South America and surrounding region: from the Last Glacial Maximum to the Holocene. (2009). Springer, New York. 2960.Google Scholar
Cruz, L.E., Bargo, S.M., Tonni, P.E., and Figini, J.A. Radiocarbon date on megafauna from the late Pleistocene-early Holocene of Cordoba province, Argentina: stratigraphic and paleoclimatic significance. Revista Mexicana De Ciencias Geologicas 27, (2010). 470476.Google Scholar
De Vivo, M., and Carmignotto, A.P. Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography 31, (2004). 943957.Google Scholar
Dillehay, T. Profiles in Pleistoscene history. Silverman, H., and Isbell, W.H. Handbook of Suth American Archaeology. (2008). Springer, New York. 2943.Google Scholar
Drehfal, M. Implicações paleoambientais preliminares da análise de d13C em osso de paleomastofauna procedente de Quijingue, Bahia. Boletim de Resumos, Simpósio Brasileiro de Paleobotânica e Palinologia. (2010). ALPP, Bahia, Salvador. 239 Google Scholar
Eggers, S., Parks, M., Grupe, G., and Reinhard, K.J. Paleoamerican diet, migration and morphology in Brazil: archaeological complexity of the earliest Americans. PLoS One 6, (2011). Google Scholar
Ferigolo, J. Late Pleistocene South-American land-mammal extinctions: the infection hypothesis. Quaternary of South America and Antarctic Peninsula 12, (1999). 279310.Google Scholar
Ferreira, N.B., and Karmann, I. Descobertas paleontológicas na região de Apiaí-SP. Boletim Informativo Geovisão 10, (2002). 78.Google Scholar
Ficcarelli, G., Coltorti, M., Moreno-Espinosa, M., Pieruccini, P.L., Rook, L., and Torre, D. A model for the Holocene extinction of the mammal megafauna in Ecuador. Journal of South American Earth Sciences 15, (2003). 835845.CrossRefGoogle Scholar
Grayson, D.K. Nineteenth-century explanations of Pleistocene extinctions: a review and analysis. (1984). Google Scholar
Grayson, D.K., and Meltzer, D.J. A requiem for North American overkill. Journal of Archaeological Science 30, (2003). 585593.Google Scholar
Hubbe, A., Hubbe, M., and Neves, W.A. Early Holocene survival of megafauna in South America. Journal of Biogeography 34, (2007). 16421646.Google Scholar
Hubbe, A., Hubbe, M., and Neves, W.A. New Late-Pleistocene Dates for the Extinct Megafauna of Lagoa Santa, Brazil. Current Research in the Pleistocene 26, (2009). 154156.Google Scholar
Hubbe, A., Vasconcelos, A.G., Vilaboim, L., Karmann, I., and Neves, W.A. Chronological distribution of Brazilian Glyptodon sp. remains: a direct 14C date for a specimen from Iporanga, São Paulo, Brazil. Radiocarbon 53, (2011). 1319.Google Scholar
Jull, A.J.T., Iturralde-Vinent, M., O'Malley, J.M., MacPhee, R.D.E., McDonald, H.G., Martin, P.S., Moody, J., and Rincón, A. Radiocarbon dating of extinct fauna in the Americas recovered from tar pits. Nuclear Instruments and Methods in Physics Research B 223–224, (2004). 668671.Google Scholar
Koch, P.L., Barnosky, A.D., (2006). Late quaternary extinctions: state of the debate. (Ed.), Annual Review of Ecology Evolution and Systematics. Annual Review of Ecology Evolution and Systematics, pp. 215250.Google Scholar
Krone, R. As grutas calcárias do Vale do Rio Ribeira de Iguape. Revista do Instituto Geográfico e Geológico 8, (1950). 72121.Google Scholar
Ledru, M.P., Rousseau, D.D., Cruz, J.F.W., Karmann, I., Riccomini, C., and Martin, L. Paleoclimate changes during the last 100 ka from a record in the Brazilian atlantic rainforest region and interhemispheric comparison. Quaternary Research 64, (2005). 444450.Google Scholar
Lino, C.F., Neto, C.M.D., Trajano, E., Gusso, G.L.N., Karmann, I., and Rodrigues, R. Paleontologia das cavernas do Vale do Ribeira - exploração I - Abismo do Fóssil (SP-145). Resultados parciais. Atas do 2o Simpósio Regional de Geologia, Rio Claro 1, (1979). 257268.Google Scholar
Lorenzen, E.D., Nogues-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A., Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen, R., Ho, S.Y.W., Goebel, T., Graf, K.E., Byers, D., Stenderup, J.T., Rasmussen, M., Campos, P.F., Leonard, J.A., Koepfli, K.-P., Froese, D., Zazula, G., Stafford, T.W., Aaris-Sorensen, K., Batra, P., Haywood, A.M., Singarayer, J.S., Valdes, P.J., Boeskorov, G., Burns, J.A., Davydov, S.P., Haile, J., Jenkins, D.L., Kosintsev, P., Kuznetsova, T., Lai, X., Martin, L.D., McDonald, H.G., Mol, D., Meldgaard, M., Munch, K., Stephan, E., Sablin, M., Sommer, R.S., Sipko, T., Scott, E., Suchard, M.A., Tikhonov, A., Willerslev, R., Wayne, R.K., Cooper, A., Hofreiter, M., Sher, A., Shapiro, B., Rahbek, C., and Willerslev, E. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, (2011). 359364.Google Scholar
Lupo, K. Cut and tooth mark distributions on large animal bones: ethnoarchaeological data from the Hadza and their implications for current ideas about early human carnivory. Journal of Archaeological Science 29, (2002). 85109.Google Scholar
Lyman, R. Analyzing cut marks: lessons from artiodactyl remains in the northwestern United States. Journal of Archaeological Science 32, (2005). 17221732.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCAL04 southern hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.CrossRefGoogle Scholar
Messineo, P.G., and Politis, G.G. New radiocarbon dates from the Campo Laborde Site (Pampean region, Argentina) support the Holocene survival of giant ground sloth and glyptodonts. Current Research in the Pleistocene 26, (2009). 59.Google Scholar
Mosimann, J.E., and Martin, P.S. Simulating overkill by Paleoindians. American Scientist 63, (1975). 304313.Google Scholar
Neves, W.A., and Okumura, M.M. Afinidades biológicas de grupos pré-históricos do vale do rio Ribeira de Iguape (SP): uma análise preliminar. Revista de Antropologia 48, (2005). 525558.Google Scholar
Neves, W.A., and Piló, L.B. Solving Lund's dilemma: new AMS dates confirm that humans and megafauna coexisted at Lagoa Santa. Current Research in the Pleistocene 20, (2003). 5760.Google Scholar
Neves, W.A., Hubbe, M., Mentz-Ribeiro, P.A., and Bernardo, D.V. Afinidades morfológicas de três crânios da tradição Umbu: uma análise exploratoria multivariada. Revista do CEPA 28, (2004). 159185.Google Scholar
Neves, W.A., Hubbe, M., Okumura, M.M.M., Gonzalez-Jose, R., Figuti, L., Eggers, S., and De Blasis, P.A.D. A new early Holocene human skeleton from Brazil: implications for the settlement of the New World. Journal of Human Evolution 48, (2005). 403414.Google Scholar
Neves, W.A., Hubbe, A., and Karmann, I. New accelerator mass spectrometry (AMS) ages suggest a revision of the electron spin resonance (ESR) Middle-Holocene dates obtained for a Toxodon platensis (Toxodontidae, Mammalia) from Southeast Brazil. Radiocarbon 49, (2007). 14111412.Google Scholar
Nogues-Bravo, D., Ohlemueller, R., Batra, P., and Araujo, M.B. Climate predictors of late quaternary extinctions. Evolution 64, (2010). 24422449.Google Scholar
Pessenda, L.C.R., De Oliveira, P.E., Mofatto, M., de Medeiros, V.B., Francischetti Garcia, R.J., Aravena, R., Bendassoli, J.A., Zuniga Leite, A., Saad, A.R., and Lincoln Etchebehere, M. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quaternary Research 71, (2009). 437452.Google Scholar
Piperno, D.R., and Stothert, K.E. Phytolith evidence for early Holocene Curcubita domestication in southwest Ecuador. Science 299, (2003). 10541057.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk, R.C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rossello, E.A., Jahn, B., Liu, T., and Petrocelli, J.L. The 4300-yr 14 C age of glyptodonts at Luján River (Mercedes, Buenos Aires, Argentina) and comments on ‘Did the megafauna range to 4300 BP in South America’ by Cione et al. Radiocarbon 43, (2001). 7781.Google Scholar
Rossetti, D.D.F., Toledo, P.M.D., Moraes-Santos, H.M., Santos, A.E.d.A. Jr. Reconstructing habitats in central Amazonia using megafauna, sedimentology, radiocarbon, and isotope analyses. Quaternary Research 61, (2004). 289300.Google Scholar
Rule, S., Brook, B.W., Haberle, S.G., Turney, C.S.M., Kershaw, A.P., and Johnson, C.N. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, (2012). 14831486.Google Scholar
Signor, P.W. III, and Lipps, J.H. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper. (1982). 291296.Google Scholar
Steadman, D.W., Martin, P.S., MacPhee, R.D.E., Jull, A.J.T., McDonald, H.G., Woods, C.A., Iturralde-Vinent, M., and Hodgins, G.W.L. Asynchronous extinction of late Quaternary sloths on continents and islands. Proceedings of the National Academy of Sciences of the United States of America 102, (2005). 1176311768.Google Scholar
Steele, J., and Politis, G. AMS 14C dating of early human occupation of southern South America. Journal of Archaeological Science 36, (2009). 419429.Google Scholar
Stuvier, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Waldron, A. Lineages that cheat death: surviving the squeeze on range size. Evolution 64, (2010). 22782292.Google Scholar
Walker, P.L. Butchering and stone tool function. American Antiquity 43, (1978). 710715.Google Scholar