Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T02:11:40.579Z Has data issue: false hasContentIssue false

Correlated Millennial-Scale Changes in Surface Hydrography and Terrigenous Sediment Yield Inferred from Last-Glacial Marine Deposits off Northeastern Brazil

Published online by Cambridge University Press:  20 January 2017

Helge W. Arz
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, D-28334, Bremen, Germany
Jürgen Pätzold
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, D-28334, Bremen, Germany
Gerold Wefer
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, D-28334, Bremen, Germany

Abstract

The stable isotope composition of planktonic foraminifera correlates with evidence for pulses of terrigenous sediment in a sediment core from the upper continental slope off northeastern Brazil. Stable oxygen isotope records of the planktonic foraminiferal species Globigerinoides sacculiferand Globigerinoides ruber(pink) reveal sub-Milankovitch changes in sea-surface hydrography during the last 85,000 yr. Warming of the surface water coincided with terrigenous sedimentation pulses that are inferred from high XRF intensities of Ti and Fe, and which suggest humid conditions in northeast Brazil. These tropical signals correlate with climatic oscillations recorded in Greenland ice cores (Dansgaard-Oeschger cycles) and in sediment cores from the North Atlantic (Heinrich events). Trade winds may have caused changes in the North Brazil Current that altered heat and salt flux into the North Atlantic, thus affecting the growth and decay of the large glacial ice sheets.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Da Silva, M.F., Soubies, F., Suguio, K., Turcq, B., and Van der Hammen, T. (1991). Mise en évidence de quatre phases d'ouverture de la foret dense dans le sud-est de l'Amazonie au cours des 60,000 dernières années. Première comparison avec d'autres regions tropicales. C.R. Académie des Sciences Paris 312, 673678.Google Scholar
Bard, E. (1988). Correction of accelerator mass spectrometry14 . Paleoceanography 3, 635645.CrossRefGoogle Scholar
Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B. (1993). 230 234 14 . Radiocarbon 35, 191199.Google Scholar
Bard, E., Rostek, R., and Sonzogni, C. (1997). Interhemispheric synchrony of the last deglacation inferred from alkenone palaeothermometry. Nature 385, 707710.Google Scholar
Behl, R.J., and Kennett, J.P. (1996). Brief interstadial events in the Santa Barbara basin, NE Pacific during the past 60 kyr. Nature 379, 243246.CrossRefGoogle Scholar
Bender, M., Sowers, T., Dickson, M.-L., Orchardo, J., Grootes, P., Mayewski, P.A., and Meese, D.A. (1994). Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663666.Google Scholar
Bond, G.C., and Lotti, R. (1995). Iceberg discharges into the North Atlantic on millenial time scale during the Last Glaciation. Science 267, 10051010.Google Scholar
Bond, G., Broecker, W., Johnsen, s., Mcmanus, J., Labeyrie, L., Jouzel, J., and Bonani, G. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.Google Scholar
Broecker, W., Bond, G., Klas, M., Clark, E., and McManus, J. (1992). Origin of the northern Atlantic's Heinrich events. Climate Dynamics 6, 265273.Google Scholar
Broecker, W.S. (1994). Massive iceberg discharges as triggers for global climate change. Nature 372, 421424.Google Scholar
Chang, P., Ji, L., and Li, H. (1997). A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385, 516518.Google Scholar
Curry, W.B., and Oppo, D.O. (1997). Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the last glacial cycle. Paleoceanography 12, 114.CrossRefGoogle Scholar
Da Silveira, I.C.A., Miranda, L.B., and Brown, W.S. (1994). On the origins of the North Brazil Current. Journal of Geophysical Research 99, 22,50122,512.CrossRefGoogle Scholar
Deuser, W.G., and Ross, E.H. (1989). Seasonally abundant planktonic foraminifera of the Saragossa Sea: Succession, deep-water fluxes, isotopic compositions, and paleooceanographic implications. Journal of Foraminiferal Research 19, 268293.Google Scholar
Duplessy, J.-C., and Blanc, P.L. (1981). Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213, 12471250.Google Scholar
Dürkoop, A., Hale, W., Mulitza, S., and Wefer, G. (1997). Late Quaternary variations of sea surface salinity and temperature in the western tropical Atlantic: Evidence from δ18 Globigerinoides sacculifer . Paleoceanography 7, 762772.Google Scholar
Erez, J., and Luz, B. (1982). Temperature control of oxygen-isotope fractionation of cultured planktonic foraminifera. Nature 279, 220222.Google Scholar
Fairbanks, R.G., Sverdlove, M., Free, R., Wiebe, P.H., and , A.W.H. (1982). Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298, 841844.CrossRefGoogle Scholar
Nature 364, (1993). 203207.Google Scholar
Grimm, E.C., Jacobson, G.L., Watts, W.A., Hansen, B.C.S., and Maasch, K.A. (1993). A 50,000-year record of climatic oscillations from Florida and its temporal correlation with the Heinrich events. Science 261, 198200.CrossRefGoogle ScholarPubMed
Grootes, P.M., Stuiver, M., Withe, J.W.C., Johnsen, S., and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Hagelberg, T.K., Bond, G., and deMenocal, P. (1994). Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene. Paleoceanography 9, 545558.CrossRefGoogle Scholar
Hastenrath, S., and Merle, J. (1987). Annual cycle of subsurface thermal structure in the tropical Atlantic Ocean. Journal of Physical Oceanography 17, 15181538.2.0.CO;2>CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 142152.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O.R. (1989). Modern Planktonic Formainifera.. Springer, New York.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. (1984). The orbital theory of pleistocene climate: Support from a revised chronology of the marine δ18 . Milankovitch and Climate, Part 1 Reidel, Dordrecht.p. 269–305Google Scholar
Jansen, J.H.F., Van der Gast, S.J., Kostner, B., and Vaars, A. (1992). CORTEX, an XRF-scanner for chemical analyses of sediment cores. GEOMAR Reports 15, Google Scholar
Jouzel, J., Lorius, C., Johnsen, S., and Grootes, P. (1994). Climate instabilities: Greenland and Antarctic records. C. R. Academy of Sciences Paris 319, 6577.Google Scholar
Levitus, S., and Boyer, T.P. (1994). World Ocean Atlas 1994, Volume 4: Temperature. U.S. Department of Commerce, Washington.Google Scholar
Levitus, S., Burgett, R., and Boyer, T.P. (1994). World Ocean Atlas 1994, Volume 3: salinity. U.S. Department of Commerce, Washington.Google Scholar
Little, M.G., Schneider, R., Kroon, D., Price, B., Summerhayes, C., and Segl, M. (1997). Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleoceanography 12, 568576.Google Scholar
Lohmann, G.P. (1995). A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10, 445457.CrossRefGoogle Scholar
Manabe, S., and Stouffer, R.J. (1997). Coupled ocean–atmosphere model response to freshwater input: Comparision to Younger Dryas event. Paleoceanography 12, 321336.Google Scholar
McIntyre, A., Ruddiman, W.F., Karlin, K., and Mix, A.C. (1989). Surface water response of the equatorial Atlantic ocean to orbital forcing. Paleoceanography 4, 1955.Google Scholar
McIntyre, A., and Molfino, B. (1996). Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274, 18671870.Google Scholar
Meese, D., Alley, R., Row, T., Grootes, P. M., Mayewski, P., Ram, M., Taylor, K., Waddington, E., and Zielinski, G (1994). Preliminary depth–age scale of the GISP2 ice core. CRREL Special Report 94-1Google Scholar
Metzler, C.V., Wenkam, C.R., and Berger, W.H. (1982). Dissolution of foraminifera in the eastern equatorial Pacific: An in situ experiment. Journal of Foraminiferal Research 12, 362368.Google Scholar
Müller, P.J., Schneider, R., and Ruhland, G. (1994). Late Quaternary PCO2 13 .Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change Springer-Verlag, Berlin.343366.Google Scholar
Mulitza, S., Wolff, T., Pätzold, J., Hale, W., and Wefer, W. (1998). Temperature sensitivity of planktonic foraminifera and its influence on the oxygen isotope record. Marine Micropaleontology 33, 223240.CrossRefGoogle Scholar
Nadeau, M.-J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottdang, A., Mous, D.J.W., Sarnthein, J.M., and Willkomm, H. (1997). The Leibniz-Laborf AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123, 2230.Google Scholar
Nobre, P., and Shulka, J. (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate 9, 24642479.Google Scholar
Paillard, D., and Labeyrie, L. (1994). Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature 372, 162164.Google Scholar
Pestiaux, P.I., van der Mensch, I., Berger, A., and Duplssy, J.C. (1988). Paleoclimatic variability at frequencies ranging from 1 cycle per 10,000 years to 1 cycle per 1000 years: Evidence for nonlinear behaviour of the climate system. Climatic Change 12, 937.CrossRefGoogle Scholar
Peterson, R.G., and Stramma, L. (1991). Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography 26, 173.CrossRefGoogle Scholar
Philander, S.G.H., and Pacanowski, R.C. (1986). The mass and heat budget in a model of the tropical Atlantic Ocean. Journal of Geophysical Research 91, 14,21214,220.Google Scholar
Rao, V.B., De Lima, M.C., and Franchito, S.-H. (1993). Seasonal and interannual variations of rainfall over eastern Northeast Brazil. Journal of Climate 6, 17541763.Google Scholar
Ravelo, A.C., and Fairbanks, R.G. (1992). Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography 7, 815831.Google Scholar
Richardson, P.L., and Walsh, D. (1986). Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drifts. Journal of Geophysical Research 91, 10,53710,550.CrossRefGoogle Scholar
Rühlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P.J., and Wefer, G. (1996). Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation. Marine Geology 135, 127152.Google Scholar
Shackleton, N.J. (1987). Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183190.CrossRefGoogle Scholar
Schott, F., Stramma, L., and Fischer, J. (1995). The warm water inflow into the western tropical Atlantic boundary regime, spring 1994. Journal of Geophysical Research 100, 24,74524,760.Google Scholar
Short, D.A., Mengel, G., Crowley, T.J., Hyde, W.T., and North, G.R. (1991). Filtering of Milankovitch cycles by earth's geography. Quaternary Research 35, 157173.Google Scholar
Stramma, L., Fischer, J., and Reppin, J. (1995). The North Brazil Undercurrent. Deep Sea Research, Part I 42, 773795.CrossRefGoogle Scholar
Summerhayes, C.P., Coutinho, P.N., França, A.M.C., and Ellis, J.P. (1975). Salvador to Fortaleza, Northeastern Brazil.Milliman, J.D., Summerhayes, C.P. Upper Continental Margin Sedimentation off Brazil Schweizerbart, Stuttgart.4577.Google Scholar
Tintelnot, M. (1997). Holocene and Late Pleistocene climate changes and sea-level fluctuations in tropical northeastern Brazil—Evidence from marine clay mineral records.Wolf, D., Starke, R., Kleberg, R. Beiträge zur Jahrestagung 1996 DTTG, Freiberg.7288.Google Scholar
Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J.C., Michel, E., Becqué, S., and van Weering, T.C.E. (1997). Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth and Planetary Science Letters 146, 1327.Google Scholar
Wefer, G., and Berger, W.H. (1991). Isotope paleontology: Growth and composition of extant calcareous species. Marine Geology 100, 207248.Google Scholar