Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T17:40:44.943Z Has data issue: false hasContentIssue false

Understanding the impact of diffusion of CO in the astrochemical models

Published online by Cambridge University Press:  18 March 2022

Kinsuk Acharyya*
Affiliation:
Planetary Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
*
Corresponding author: Kinsuk Acharyya, email: [email protected]

Abstract

The mobility of lighter species on the surface of interstellar dust grains plays a crucial role in forming simple through complex molecules. Carbon monoxide is one of the most abundant molecules, its surface diffusion on the grain surface is essential to forming many molecules. Recent laboratory experiments found a diverse range of diffusion barriers for CO on the grain surface, their use can significantly impact the abundance of several molecules. The impact of different diffusion barriers of CO, in the astrochemical models, is studied to understand its effect on the abundance of solid CO and the species for which it is a reactant partner. A gas-grain network is used for three different physical conditions; cold core and warm-up models with slow and fast heating rates. Two different ratios (0.3 and 0.5) between diffusion and desorption barrier are utilised for all the species. For each physical condition and ratio, six different models are run by varying diffusion barriers of CO. Solid CO abundance for the models with the lowest diffusion barrier yields less than 0.1% of water ice for cold clouds and a maximum of 0.4% for slow and fast warm-up models. Also, solid $\textrm{CO}_2$ in dense clouds is significantly overproduced ( ${\sim}140\%$ of water). The abundance of H2CO and $\textrm{CH}_3\textrm{OH}$ showed an opposite trend, and HCOOH, $\textrm{CH}_3\textrm{CHO}$ , $\textrm{NH}_2\textrm{CO}$ , and $\textrm{CH}_3\textrm{COCH}_3$ are produced in lower quantities for models with low diffusion barriers for CO. Considerable variation in abundance is observed between models with the high and low diffusion barrier. Models with higher diffusion barriers provide a relatively better agreement with the observed abundances when compared with the models having lower diffusion barriers.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharyya, K., Fuchs, G. W., Fraser, H. J., van Dishoeck, E. F., & Linnartz, H. 2007, A&A, 466, 1005Google Scholar
Acharyya, K., & Herbst, E. 2015, ApJ, 812, 142Google Scholar
Acharyya, K., & Herbst, E. 2016, ApJ, 822, 105Google Scholar
Acharyya, K., & Herbst, E. 2017, ApJ, 850, 105Google Scholar
Acharyya, K., Herbst, E., Caravan, R. L., Shannon, R. J., Blitz, M. A., & Heard, D. E. 2015, MolPh, 113, 2243Google Scholar
Allen, M., & Robinson, G. W. 1977, ApJ, 212, 396Google Scholar
Andersson, S., Goumans, T. P. M., & Arnaldsson, A. 2011, CPLett, 513, 31Google Scholar
Asgeirsson, V. M., Jonssion, H. M., & Wikfeldt, K. T. M. 2017, JPCC, 121, 1648Google Scholar
Bisschop, S. E., Fraser, H. J., Öberg, K. I., van Dishoeck, E. F., & Schlemmer, S. 2006, A&A, 449, 1297Google Scholar
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541Google Scholar
Brown, P. D., Charnley, S. B., & Millar, T. J. 1988, MNRAS, 231, 409CrossRefGoogle Scholar
Caselli, P., Walmsley, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJ, 523, L165Google Scholar
Collings, M. P., Dever, J. W., Fraser, H. J., & McCoustra, M. R. S. 2003, Ap&SS, 285, 633Google Scholar
Cooke, I. R., Öberg, K. I., Fayolle, E. C., Peeler, Z., & Bergner, J. B. 2018, ApJ, 852, 75Google Scholar
Drozdovskaya, M. N., Walsh, C., van Dishoeck, E. F., Furuya, K., Marboeuf, U., Thiabaud, A., Harsono, D., & Visser, R. 2016, MNRAS, 462, 977Google Scholar
Fayolle, E. C., Balfe, J., Loomis, R., Bergner, J., Graninger, D., Rajappan, M., & Öberg, K. I. 2016, ApJ, 816, L28Google Scholar
Fedoseev, G., Cuppen, H. M., Ioppolo, S., Lamberts, T., & Linnartz, H. 2015, MNRAS, 448, 1288Google Scholar
Fraser, H. J., Collings, M. P., & McCoustra, M. R. S. 2002, RScI, 73, 2161Google Scholar
Fuchs, G. W., Cuppen, H. M., Ioppolo, S., Romanzin, C., Bisschop, S. E., Andersson, S., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 505, 629Google Scholar
Furuya, K., Aikawa, Y., Hincelin, U., Hassel, G. E., Bergin, E. A., Vasyunin, A. I., & Herbst, E. 2015, A&A, 584, A124Google Scholar
Garrod, R. T. 2013, ApJ, 765, 60Google Scholar
Garrod, R. T., & Pauly, T. 2011, ApJ, 735, 15Google Scholar
Garrod, R. T., Wakelam, V., & Herbst, E. 2007, A&A, 467, 1103Google Scholar
Garrod, R. T., Widicus Weaver, S. L., & Herbst, E. 2008, ApJ, 682, 283Google Scholar
Goumans, T. P. M., Uppal, M. A., & Brown, W. A. 2008, MNRAS, 384, 1158Google Scholar
Hama, T., Kuwahata, K., Watanabe, N., Kouchi, A., Kimura, Y., Chigai, T., & Pirronello, V. 2012, ApJ, 757, 185Google Scholar
Hama, T., & Watanabe, N. 2013, ChRv, 113, 8783Google Scholar
Harada, N., Herbst, E., & Wakelam, V. 2010, ApJ, 721, 1570Google Scholar
Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167Google Scholar
He, J., Acharyya, K., & Vidali, G. 2016a, ApJ, 823, 56Google Scholar
He, J., Acharyya, K., & Vidali, G. 2016b, ApJ, 825, 89Google Scholar
He, J., Emtiaz, S., & Vidali, G. 2018, ApJ, 863, 156CrossRefGoogle Scholar
Herbst, E., & Millar, T. 2008, The Chemistry of Cold Interstellar Cores. Imperial College Press, 154CrossRefGoogle Scholar
Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427CrossRefGoogle Scholar
Karssemeijer, L. J., Ioppolo, S., van Hemert, M. C., van der Avoird, A., Allodi, M. A., Blake, G. A., & Cuppen, H. M. 2014, ApJ, 781, 16CrossRefGoogle Scholar
Karssemeijer, L. J., Pedersen, A., Jónsson, H., & Cuppen, H. M. 2012, PCCP (Incorporating Faraday Transactions), 14, 10844CrossRefGoogle Scholar
Katz, N., Furman, I., Biham, O., Pirronello, V., & Vidali, G. 1999, ApJ, 522, 305Google Scholar
Kouchi, A., Furuya, K., Hama, T., Chigai, T., Kozasa, T., & Watanabe, N. 2020, ApJ, 891, L22CrossRefGoogle Scholar
Lauck, T., Karssemeijer, L., Shulenberger, K., Rajappan, M., Öberg, K. I., & Cuppen, H. M. 2015, ApJ, 801, 118CrossRefGoogle Scholar
Livingston, F. E., Smith, J. A., & George, S. M. 2002, JPCA, 106, 6309Google Scholar
Marchand, P., Riou, S., & Ayotte, P. 2006, JPCA, 110, 11654CrossRefGoogle Scholar
Minissale, M., et al. 2013a, Phys. Rev. Lett., 111, 053201Google Scholar
Minissale, M., Congiu, E., & Dulieu, F. 2014, J. Chem. Phys., 140, 074705Google Scholar
Minissale, M., Congiu, E., Manicò, G., Pirronello, V., & Dulieu, F. 2013b, A&A, 559, A49CrossRefGoogle Scholar
Mispelaer, F., et al. 2013, A&A, 555, A13CrossRefGoogle Scholar
Noble, J. A., Congiu, E., Dulieu, F., & Fraser, H. J. 2012, MNRAS, 421, 768Google Scholar
Öberg, K. I., Fayolle, E. C., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 505, 183CrossRefGoogle Scholar
Roser, J. E., Vidali, G., Manicò, G., & Pirronello, V. 2001, ApJ, 555, L61Google Scholar
Ruaud, M., Loison, J. C., Hickson, K. M., Gratier, P., Hersant, F., & Wakelam, V. 2015, MNRAS, 447, 4004CrossRefGoogle Scholar
Senevirathne, B., Andersson, S., Dulieu, F., & Nyman, G. 2017, MolAs, 6, 59Google Scholar
Smith, R. S., May, R. A., & Kay, B. D. 2016, JPCB, 120, 1979Google Scholar
Song, L., & Kästner, J. 2017, ApJ, 850, 118CrossRefGoogle Scholar
Tachikawa, H., & Kawabata, H. 2016, JPCA, 120, 6596Google Scholar
Wakelam, V., & Herbst, E. 2008, ApJ, 680, 371CrossRefGoogle Scholar
Wakelam, V., et al. 2015, ApJS, 217, 20CrossRefGoogle Scholar
Watanabe, N., Nagaoka, A., Shiraki, T., & Kouchi, A. 2004, ApJ, 616, 638Google Scholar
Watanabe, N., Shiraki, T., & Kouchi, A. 2003, ApJ, 588, L121CrossRefGoogle Scholar
Watanabe, N., Kimura, Y., Kouchi, A., Chigai, T., Hama, T., & Pirronello, V. 2010, ApJ, 714, L233CrossRefGoogle Scholar
Woon, D. E. 1996, J. Chem. Phys., 105, 9921CrossRefGoogle Scholar
Woon, D. E., & Herbst, E. 2009, ApJ, 185, 273Google Scholar