Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:50:13.188Z Has data issue: false hasContentIssue false

Short-Period Comet Production in Close Encounters with Jupiter

Published online by Cambridge University Press:  25 April 2016

Duncan Olsson-Steel
Affiliation:
Department of Physics and Mathematical PhysicsUniversity of Adelaide
Lynne Taaffe
Affiliation:
Department of Physics and Mathematical PhysicsUniversity of Adelaide
Simon Williams
Affiliation:
Department of Physics and Mathematical PhysicsUniversity of Adelaide

Abstract

A method for calculating the resultant probability distributions of orbital elements for a small body (a comet, asteroid or meteoroid) after a gravitational encounter with a planet is described. This technique incorporates the frequency of such encounters so that the chance of attaining a certain new orbit per unit time is derived. The use of this technique is then illustrated by considering the effect of Jupiter upon the orbits of near-parabolic comets with perihelia near that planet (q = 5.2 AU) and in the inner solar system (q = 1.0 AU), with prograde (i = 10°) and retrograde (i = 170°) paths. As indicated by previous authors the prograde comets are more easily captured into short-period (P< 20 yr) and intermediate-period (20<P<200 yr) orbits; however, in contradiction to most previous work but in agreement with the results of Stagg and Bailey (submitted to Mon. Not. R. Astron. Soc.) it is found that the comets with smaller perihelia, rather than those with perihelia near Jupiter, have higher capture probabilities. This is apparently due to the fact that a small deflection only is needed to sufficiently decelerate a comet onto a smaller orbit if it makes a near-perpendicular crossing of Jupiter’s path, whereas a larger deflection (to achieve a large orbital change) is needed if the paths are near-parallel. With comparatively modest amounts of computer time this method may be used to calculate the relative capture probabilities as a function of i and q for all values of interest, and is thus a useful precursor to integrations following orbital evolution, since it indicates the most likely avenues whereby shorter-period comets are derived from the near-parabolic flux.

Type
Comets
Copyright
Copyright © Astronomical Society of Australia 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applegate, J. H., Douglas, M. R., Gürsel, Y., Sussman, G. J. and Wisdom, J., 1986, Astron. J., 92, 176.CrossRefGoogle Scholar
Bailey, M. E., 1983a, Nature, 302, 399.Google Scholar
Bailey, M. E., 1983b, in Asteroids, Comets, Meteors, (eds. Lagerkvist, C.-I. and Rickman, H.), p. 383, Univ. of Uppsala, Sweden.Google Scholar
Bailey, M. E., Clube, S. V. M. and Napier, W. M., 1986, Vistas Astron., 29, 53.Google Scholar
Bailey, M. E., Clube, S. V. M. and Napier, W. M., 1989, The Origin of Comets, Pergamon, Oxford.Google Scholar
Bailey, M. E. and Stagg, C. R., 1988, Mon. Not. R. Astron. Soc., 235, 1.Google Scholar
Belyaev, N. A., Kresák, L., Pittich, E. M. and Pushkarev, A. N., 1986, Catalogue of Short-Period Comets, Astronomical Institute of Slovak Academy of Sciences, Bratislava.Google Scholar
Callandreau, O., 1892, Ann. Obs. Paris Mém., 20, B1.Google Scholar
Carusi, A., Kresák, L., Perozzi, E. and Valsecchi, G.B., 1985, Long-Term Evolution of Short-Period Comets, Adam Hilger, Bristol.Google Scholar
Carusi, A., Kresák, L., Perozzi, E. and Valsecchi, G.B., 1987, Proc. Tenth European Regional Astronomy Meeting of the IAU, 2, 29.Google Scholar
Carusi, A. and Valsecchi, G.B., 1980, Moon and Planets, 22, 113.CrossRefGoogle Scholar
Carusi, A. and Valsecchi, G.B., 1981, Astron. Astrophys., 94, 226.Google Scholar
Carusi, A. and Valsecchi, G.B., 1985, in Dynamics of Comets: Their Origin and Evolution, (eds. Carusi, A. and Valsecchi, G. B.), IAU Colloq. No. 83, p. 261, Reidel, Dordrecht.CrossRefGoogle Scholar
Carusi, A. and Valsecchi, G.B., 1987, Proc. Tenth European Regional Astronomy Meeting of the IAU, 2, 21.Google Scholar
Degewij, J. and Tedesco, E. F., 1982, in Comets, (Ed. Wilkening, L.), p. 665, Univ. of Arizona Press, Tucson.Google Scholar
Duncan, M., Quinn, T. and Tremarne, S., 1987, Astron. J., 94, 1330.CrossRefGoogle Scholar
Duncan, M., Quinn, T. and Tremaine, S., 1988, Astrophys. J., 328, L69.Google Scholar
Everhart, E., 1968, Astron. J., 73, 1039.Google Scholar
Everhart, E., 1969, Astron. J., 74, 735.Google Scholar
Everhart, E., 1972, Astrophys. Lett., 10, 131.Google Scholar
Everhart, E., 1973a, Astron. J., 78, 329.Google Scholar
Everhart, E., 1973b, Astron. J., 78, 316.Google Scholar
Everhart, E., 1977, in Comets, Asteroids, Meteorites: Interrelations, Evolution and Origin, (e.d Delsemme, A. H.), IAU Colloq. No. 39, p. 99, Univ. of Toledo, Ohio.Google Scholar
Everhart, E., 1982, in Comets, (e.d Wilkening, L.), p. 659, Univ. of Arizona Press, Tucson.Google Scholar
Fernández, J. A., 1980, Mon. Not. R. Astron. Soc., 192, 481.CrossRefGoogle Scholar
Fernández, J. A., 1981, Astron. Astrophys., 96, 26.Google Scholar
Fernández, J. A., 1982, Astron. J., 87, 1318.Google Scholar
Fernández, J. A., 1984, Astron. Astrophys., 135, 129.Google Scholar
Fernández, J. A., 1985a, in Dynamics of Comets: Their Origin and Evolution, (eds. Carusi, A. and Valsecchi, G. B.), IAU Colloq. No. 83, p. 45, Reidel, Dordrecht.Google Scholar
Fernández, J. A., 1985b, Icarus, 64, 308.Google Scholar
Fernández, J. A. and IP, W.-H., 1983, Icarus, 54, 377.Google Scholar
Froeschlé, C. and Rickman, H., 1980, Astron. Astrophys., 82, 183.Google Scholar
Fulle, M., 1987, Astron. Astrophys., 183, 392.Google Scholar
Fulle, M., 1988, Astron. Astrophys., 189, 281.Google Scholar
Greenberg, R. J., Carusi, A. and Valsecchi, G.B., 1988, Icarus, 75, 1.CrossRefGoogle Scholar
Gustafson, В. Å. S., Misconi, N. Y. and Rusk, E. T., 1987, Icarus, 72, 582.Google Scholar
Hahn, G. and Rickman, H., 1985, Icarus, 61, 417.CrossRefGoogle Scholar
Hartmann, W.K., Tholen, D. J. and Cruikshank, D. P., 1987, Icarus, 69, 33.Google Scholar
Hills, J. G., 1981, Astron. J., 86, 1730.Google Scholar
Jackson, A. A. and Killen, R. M., 1988, Earth, Moon and Planets, 42, 41.Google Scholar
Kazimirchak-Polonskaya, E. I. and Shaporev, S. D., 1976, Soviet Astron. A. J., 53, 1306.Google Scholar
Kessler, D. J., 1981, Icarus, 48, 39.Google Scholar
Kresák, L., 1981, Bull. Astron. Inst. Czechoslov., 32, 321.Google Scholar
Kresák, L., 1982, in Comets, (e.d Wilkening, L.), p. 56, Univ. of Arizona Press, Tucson.Google Scholar
Leinert, C., Röser, S. and Buitrago, J., 1983, Astron. Astrophys., 118, 345.Google Scholar
Kuiper, G. P., 1951, in Astrophysics, (e.d Hynek, J. A.), p. 357, McGraw-Hill, New York.Google Scholar
Marochnik, L. S., Mukhin, L. M. and Sagdeev, R. Z., 1988, Science, 242, 547.Google Scholar
Marsden, B. G., 1986, Catalogue of Cometary Orbits, IAU, Minor Planet Center, Cambridge, Mass. Google Scholar
Mendis, D. A., 1973, Astrophys. Space Sci., 20, 165.Google Scholar
Newton, H. A., 1893, Mem. Natl. Acad. Sci. (Washington), 6, 7.Google Scholar
Olsson-Steel, D., 1986, Mon. Not. R. Astron. Soc., 219, 47.CrossRefGoogle Scholar
Olsson-Steel, D., 1987a, Icarus, 69, 51.Google Scholar
Olsson-Steel, D., 1987b, Mon. Not. R. Astron. Soc., 227, 501.Google Scholar
Olsson-Steel, D., 1987c, Astron. Astrophys., 187, 909.Google Scholar
Olsson-Steel, D., 1987d, The Observatory, 107, 157.Google Scholar
Olsson-Steel, D., 1988a, Mon. Not. R. Astron. Soc., 234, 389.Google Scholar
Olsson-Steel, D. 1988b, Icarus, 75, 64.Google Scholar
Olsson-Steel, D., 1988c, Astron. Astrophys., 195, 327.Google Scholar
Olsson-Steel, D., 1988d, Astron. Astrophys., 204, 313.Google Scholar
Olsson-Steel, D., 1988e, The Observatory, 108, 183.Google Scholar
Oort, J. H., 1950, Bull. Astron. Inst. Neth., 11, 91.Google Scholar
Öpik, E. J., 1976, Interplanetary Encounters, Elsevier, Amsterdam.Google Scholar
Rickman, H., 1986, Proc. Comet Nucleus Sample Return Workshop, ESA SP-249, 195.Google Scholar
Rickman, H. and Vaghi, S., 1976, Astron. Astrophys., 51, 327.Google Scholar
Russell, H. N., 1920, Astron. J., 33, 49.Google Scholar
Sagdeev, R. Z., Elyasberg, P. E. and Moroz, V. I., 1988, Nature, 331, 240.Google Scholar
Stagg, C. R. and Bailey, M. E., 1989, Mon. Not. R. Astron. Soc., (submitted).Google Scholar
Steel, D. I., and Baggaley, W. J., 1985, Mon. Not. R. Astron. Soc., 212 817.Google Scholar
Steel, D. I. and Elford, W. G., 1986, Mon. Not. R. Astron. Soc., 218, 185.Google Scholar
Sussman, G. J. and Wisdom, J., 1988, Science, 241, 433.CrossRefGoogle Scholar
Sykes, M. V. and Greenberg, R. J., 1986, Icarus, 65, 51.Google Scholar
Tisserand, M. F., 1889, Bull. Astronomique, 6, 242.Google Scholar
Torbett, M. V., 1986, Astron. J., 92, 171.Google Scholar
van Woerkom, A. J. J., 1948, Bull. Astron. Inst. Neth., 10, 464.Google Scholar
Vsekhsvyatskii, S. K., 1962, Publ. Astron. Soc. Pac., 76, 105.Google Scholar
Vsekhsvyatskii, S. K., 1967, Soviet Astron. A. J., 11, 473.Google Scholar
Weidenschilling, S. J., 1975, Astron. J., 80, 145.CrossRefGoogle Scholar
Weissman, P. R., 1985, Space Sci. Rev., 41, 299.Google Scholar
Whipple, F. L., 1964, Proc Natl. Acad. Sci. (U.S.A.), 51, 711.CrossRefGoogle Scholar
Whipple, F. L., 1967, in The Zodiacal Light and the Interplanetary Medium, NASA SP-150, (e.d Weinberg, J. L.), p. 409, Washington D.C. Google Scholar
Whipple, F. L., 1972, The Motion, Evolution of Orbits, and Origin of Comets, IAU Symp. 45, (eds. Chebotarev, G. A., Kazimirchak-Polonskaya, E. I. and Marsden, B. G.), p. 401, Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Whipple, F. L., 1975, Astron. J., 80, 525.Google Scholar