Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T13:14:59.367Z Has data issue: false hasContentIssue false

Basic symptoms and gray matter volumes of patients at clinical high risk for psychosis

Published online by Cambridge University Press:  14 May 2020

Daniela Hubl
Affiliation:
Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
Chantal Michel
Affiliation:
University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
Frauke Schultze-Lutter
Affiliation:
Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
Martinus Hauf
Affiliation:
Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland
Benno G. Schimmelmann
Affiliation:
University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland University Hospital of Child and Adolescent Psychiatry, University Hospital Hamburg Eppendorf, Hamburg, Germany
Michael Kaess
Affiliation:
University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
Jochen Kindler*
Affiliation:
University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
*
Author for correspondence: Jochen Kindler, E-mail: [email protected]

Abstract

Background

Clinical high-risk (CHR) for psychosis is indicated by ultra-high risk (UHR) and basic symptom (BS) criteria; however, conversion rates are highest when both UHR and BS criteria are fulfilled (UHR&BS). While BSs are considered the most immediate expression of neurobiological aberrations underlying the development of psychosis, research on neurobiological correlates of BS is scarce.

Methods

We investigated gray matter volumes (GMV) of 20 regions of interest (ROI) previously associated with UHR criteria in 90 patients from the Bern early detection service: clinical controls (CC), first-episode psychosis (FEP), UHR, BS and UHR&BS. We expected lowest GMV in FEP and UHR&BS, and highest volume in CC with UHR and BS in-between.

Results

Significantly, lower GMV was detected in FEP and UHR&BS patients relative to CC with no other significant between-group differences. When ROIs were analyzed separately, seven showed a significant group effect (FDR corrected), with five (inferior parietal, medial orbitofrontal, lateral occipital, middle temporal, precuneus) showing significantly lower GM volume in the FEP and/or UHR&BS groups than in the CC group (Bonferroni corrected). In the CHR group, only COGDIS scores correlated negatively with cortical volumes.

Conclusions

This is the first study to demonstrate that patients who fulfill both UHR and BS criteria – a population that has been associated with higher conversion rates – exhibit more severe GMV reductions relative to those who satisfy BS or UHR criteria alone. This result was mediated by the BS in the UHR&BS group, as only the severity of BS was linked to GMV reductions.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work

References

APA (ed.). (1994). Diagnostic and statistical manual of mental disorders (4th ed., pp. 760761). Washington: American Psychiatric Press.Google Scholar
Borgwardt, S. J., McGuire, P. K., Aston, J., Gschwandtner, U., Pfluger, M. O., Stieglitz, R. D., … Riecher-Rossler, A. (2008). Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophrenia Research, 106(2–3), 108114. doi: 10.1016/j.schres.2008.08.007.CrossRefGoogle Scholar
Borgwardt, S. J., Riecher-Rossler, A., Dazzan, P., Chitnis, X., Aston, J., Drewe, M., … McGuire, P. K. (2007). Regional gray matter volume abnormalities in the at risk mental state. Biological Psychiatry, 61(10), 11481156. doi: 10.1016/j.biopsych.2006.08.009.CrossRefGoogle ScholarPubMed
Brent, B. K., Rosso, I. M., Thermenos, H. W., Holt, D. J., Faraone, S. V., Makris, N., … Seidman, L. J. (2016). Alterations of lateral temporal cortical gray matter and facial memory as vulnerability indicators for schizophrenia: An MRI study in youth at familial high-risk for schizophrenia. Schizophrenia Research, 170(1), 123129. doi: 10.1016/j.schres.2015.11.013.CrossRefGoogle ScholarPubMed
Cannon, T. D. (2016). Brain biomarkers of vulnerability and progression to psychosis. Schizophrenia Bulletin, 42(Suppl 1), S127S132. doi: 10.1093/schbul/sbv173.CrossRefGoogle ScholarPubMed
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., & van Erp, T. G., … North American Prodrome Longitudinal Study, C. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157. doi: 10.1016/j.biopsych.2014.05.023.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564583. doi: 10.1093/brain/awl004.CrossRefGoogle ScholarPubMed
Chakirova, G., Welch, K. A., Moorhead, T. W., Stanfield, A. C., Hall, J., Skehel, P., … McIntosh, A. M. (2010). Orbitofrontal morphology in people at high risk of developing schizophrenia. European Psychiatry: the Journal of the Association of European Psychiatrists, 25(6), 366372. doi: 10.1016/j.eurpsy.2010.03.001.CrossRefGoogle ScholarPubMed
Chung, Y., Haut, K. M., He, G., van Erp, T. G. M., McEwen, S., & Addington, J., … North American Prodrome Longitudinal Study, C. (2017). Ventricular enlargement and progressive reduction of cortical gray matter are linked in prodromal youth who develop psychosis. Schizophrenia Research, 189, 169174. doi: 10.1016/j.schres.2017.02.014.CrossRefGoogle ScholarPubMed
Cullen, A. E., De Brito, S. A., Gregory, S. L., Murray, R. M., Williams, S. C., Hodgins, S., & Laurens, K. R. (2013). Temporal lobe volume abnormalities precede the prodrome: A study of children presenting antecedents of schizophrenia. Schizophrenia Bulletin, 39(6), 13181327. doi: 10.1093/schbul/sbs128.CrossRefGoogle ScholarPubMed
Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 10571070. doi: 10.1016/j.neuron.2012.12.002.CrossRefGoogle ScholarPubMed
Fluckiger, R., Michel, C., Grant, P., Ruhrmann, S., Vogeley, K., Hubl, D., … Schultze-Lutter, F. (2019). The interrelationship between schizotypy, clinical high risk for psychosis and related symptoms: Cognitive disturbances matter. Schizophrenia Research, 210, 188196. doi: 10.1016/j.schres.2018.12.039.CrossRefGoogle ScholarPubMed
Fluckiger, R., Ruhrmann, S., Debbane, M., Michel, C., Hubl, D., Schimmelmann, B. G., … Schultze-Lutter, F. (2016). Psychosis-predictive value of self-reported schizotypy in a clinical high-risk sample. Journal of Abnormal Psychology, 125(7), 923932. doi: 10.1037/abn0000192.CrossRefGoogle Scholar
Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rossler, A., Schultze-Lutter, F., … Yung, A. (2013). The psychosis high-risk state: A comprehensive state-of-the-art review. JAMA Psychiatry, 70(1), 107120. doi: 10.1001/jamapsychiatry.2013.269.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Borgwardt, S., Crescini, A., Deste, G., Kempton, M. J., Lawrie, S., … Sacchetti, E. (2011a). Neuroanatomy of vulnerability to psychosis: A voxel-based meta-analysis. Neuroscience & Biobehavioral Reviews, 35(5), 11751185. doi: 10.1016/j.neubiorev.2010.12.005.CrossRefGoogle Scholar
Fusar-Poli, P., Broome, M. R., Woolley, J. B., Johns, L. C., Tabraham, P., Bramon, E., … McGuire, P. (2011b). Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: Longitudinal VBM-fMRI study. Journal of Psychiatric Research, 45(2), 190198. doi: 10.1016/j.jpsychires.2010.05.012.CrossRefGoogle Scholar
Fusar-Poli, P., Cappucciati, M., Rutigliano, G., Schultze-Lutter, F., Bonoldi, I., Borgwardt, S., … McGuire, P. (2015). At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction. World psychiatry: Official Journal of the World Psychiatric Association, 14(3), 322332. doi: 10.1002/wps.20250.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Radua, J., McGuire, P., & Borgwardt, S. (2012). Neuroanatomical maps of psychosis onset: Voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophrenia Bulletin, 38(6), 12971307. doi: 10.1093/schbul/sbr134.CrossRefGoogle ScholarPubMed
Heckers, S., Barch, D. M., Bustillo, J., Gaebel, W., Gur, R., Malaspina, D., … Carpenter, W. (2013). Structure of the psychotic disorders classification in DSM-5. Schizophrenia Research, 150(1), 1114. doi: 10.1016/j.schres.2013.04.039.CrossRefGoogle ScholarPubMed
Hurlemann, R., Jessen, F., Wagner, M., Frommann, I., Ruhrmann, S., Brockhaus, A., … Maier, W. (2008). Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychological Medicine, 38(6), 843851. doi: 10.1017/S0033291708003279.CrossRefGoogle ScholarPubMed
Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187193. doi: 10.1038/nature09552.CrossRefGoogle ScholarPubMed
Jung, W. H., Borgwardt, S., Fusar-Poli, P., & Kwon, J. S. (2012). Gray matter volumetric abnormalities associated with the onset of psychosis. Frontiers in Psychiatry, 3, 101. doi: 10.3389/fpsyt.2012.00101.CrossRefGoogle Scholar
Keefe, R. S., & Harvey, P. D. (2012). Cognitive impairment in schizophrenia. Handbook of Experimental Pharmacology, 213, 1137. doi: 10.1007/978-3-642-25758-2_2.CrossRefGoogle Scholar
Khoury, R., & Nasrallah, H. A. (2018). Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): State or trait? Schizophrenia Research, 199, 3138. doi: 10.1016/j.schres.2018.04.017.CrossRefGoogle ScholarPubMed
Kindler, J., Jann, K., Homan, P., Hauf, M., Walther, S., Strik, W., … Hubl, D. (2015). Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia. Schizophrenia Bulletin, 41(1), 163170. doi: 10.1093/schbul/sbt180.CrossRefGoogle Scholar
Kindler, J., Schultze-Lutter, F., Hauf, M., Dierks, T., Federspiel, A., Walther, S., … Hubl, D. (2018). Increased striatal and reduced prefrontal cerebral blood flow in clinical high risk for psychosis. Schizophrenia Bulletin, 44(1), 182192. doi: 10.1093/schbul/sbx070.CrossRefGoogle ScholarPubMed
Kindler, J., Schultze-Lutter, F., Michel, C., Martz-Irngartinger, A., Linder, C., Schmidt, S. J., … Walther, S. (2016). Abnormal involuntary movements are linked to psychosis-risk in children and adolescents: Results of a population-based study. Schizophrenia Research, 174(1–3), 5864. doi: 10.1016/j.schres.2016.04.032.CrossRefGoogle ScholarPubMed
Kirkbride, J. B., Fearon, P., Morgan, C., Dazzan, P., Morgan, K., Tarrant, J., … Jones, P. B. (2006). Heterogeneity in incidence rates of schizophrenia and other psychotic syndromes: Findings from the 3-center AeSOP study. Archives of General Psychiatry, 63(3), 250258. doi: 10.1001/archpsyc.63.3.250.CrossRefGoogle ScholarPubMed
Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158164.CrossRefGoogle ScholarPubMed
Kohler, S., van der Werf, M., Hart, B., Morrison, G., McCreadie, R., Kirkpatrick, B., … Allardyce, J. (2009). Evidence that better outcome of psychosis in women is reversed with increasing age of onset: A population-based 5-year follow-up study. Schizophrenia Research, 113(2–3), 226232. doi: 10.1016/j.schres.2009.05.017.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., … Meisenzahl, E. (2014). Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders. Schizophrenia Bulletin, 40(5), 11401153. doi: 10.1093/schbul/sbt142.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Kambeitz-Ilankovic, L., Ruhrmann, S., Rosen, M., Ruef, A., Dwyer, D. B., … Consortium, P. (2018). Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or With recent-onset depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry, 75(11), 11561172. doi: 10.1001/jamapsychiatry.2018.2165.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., … Gaser, C. (2009a). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66(7), 700712. doi: 10.1001/archgenpsychiatry.2009.62.CrossRefGoogle Scholar
Koutsouleris, N., Riecher-Rossler, A., Meisenzahl, E. M., Smieskova, R., Studerus, E., Kambeitz-Ilankovic, L., … Borgwardt, S. (2015). Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophrenia Bulletin, 41(2), 471482. doi: 10.1093/schbul/sbu078.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Schmitt, G. J., Gaser, C., Bottlender, R., Scheuerecker, J., McGuire, P., … Meisenzahl, E. M. (2009b). Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes. The British Journal of Psychiatry: the Journal of Mental Science, 195(3), 218226. doi: 10.1192/bjp.bp.108.052068.CrossRefGoogle Scholar
Leucht, S., Wahlbeck, K., Hamann, J., & Kissling, W. (2003). New generation antipsychotics versus low-potency conventional antipsychotics: A systematic review and meta-analysis. Lancet (London, England), 361(9369), 15811589. doi: 10.1016/S0140-6736(03)13306-5.CrossRefGoogle ScholarPubMed
McGlashan, T., Walsh, B., & Woods, S. (2010). The psychosis-risk syndrome. Handbook for diagnosis and follow Up. New York: Oxford University Press.Google Scholar
Michel, C., Ruhrmann, S., Schimmelmann, B. G., Klosterkotter, J., & Schultze-Lutter, F. (2014). A stratified model for psychosis prediction in clinical practice. Schizophrenia Bulletin, 40(6), 15331542. doi: 10.1093/schbul/sbu025.CrossRefGoogle ScholarPubMed
Mikanmaa, E., Grent-'t-Jong, T., Hua, L., Recasens, M., Thune, H., & Uhlhaas, P. J. (2019). Towards a neurodynamical understanding of the prodrome in schizophrenia. NeuroImage, 190, 144153. doi: 10.1016/j.neuroimage.2017.11.026.CrossRefGoogle Scholar
Mollon, J., David, A. S., Zammit, S., Lewis, G., & Reichenberg, A. (2018). Course of cognitive development from infancy to early adulthood in the psychosis spectrum. JAMA Psychiatry, 75(3), 270279. doi: 10.1001/jamapsychiatry.2017.4327.CrossRefGoogle ScholarPubMed
Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., … McCarley, R. W. (2004). Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: An MRI study. The American Journal of Psychiatry, 161(9), 16031611. doi: 10.1176/appi.ajp.161.9.1603.CrossRefGoogle Scholar
Penn, D. L., Sanna, L. J., & Roberts, D. L. (2008). Social cognition in schizophrenia: An overview. Schizophrenia Bulletin, 34(3), 408411. doi: 10.1093/schbul/sbn014.CrossRefGoogle ScholarPubMed
Penttila, M., Jaaskelainen, E., Hirvonen, N., Isohanni, M., & Miettunen, J. (2014). Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: Systematic review and meta-analysis. The British Journal of Psychiatry: the Journal of Mental Science, 205(2), 8894. doi: 10.1192/bjp.bp.113.127753.CrossRefGoogle ScholarPubMed
Reavis, E. A., Lee, J., Wynn, J. K., Engel, S. A., Jimenez, A. M., & Green, M. F. (2017). Cortical thickness of functionally defined visual areas in schizophrenia and bipolar disorder. Cerebral Cortex (New York, N.Y.: 1991), 27(5), 29842993. doi: 10.1093/cercor/bhw151.Google ScholarPubMed
Roalf, D. R., Quarmley, M., Calkins, M. E., Satterthwaite, T. D., Ruparel, K., Elliott, M. A., … Turetsky, B. I. (2017). Temporal lobe volume decrements in psychosis spectrum youths. Schizophrenia Bulletin, 43(3), 601610. doi: 10.1093/schbul/sbw112.Google ScholarPubMed
Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex (New York, N.Y.: 1991), 10(3), 284294.CrossRefGoogle ScholarPubMed
Ruhrmann, S., Schultze-Lutter, F., Salokangas, R. K., Heinimaa, M., Linszen, D., Dingemans, P., … Klosterkotter, J. (2010). Prediction of psychosis in adolescents and young adults at high risk: Results from the prospective European prediction of psychosis study. Archives of General Psychiatry, 67(3), 241251. doi: 10.1001/archgenpsychiatry.2009.206.CrossRefGoogle Scholar
Salokangas, R. K., Heinimaa, M., From, T., Loyttyniemi, E., Ilonen, T., & Luutonen, S., … group, E. (2014). Short-term functional outcome and premorbid adjustment in clinical high-risk patients. Results of the EPOS project . European psychiatry: the Journal of the Association of European Psychiatrists, 29(6), 371380. doi: 10.1016/j.eurpsy.2013.10.003.CrossRefGoogle ScholarPubMed
Satterthwaite, T. D., Wolf, D. H., Calkins, M. E., Vandekar, S. N., Erus, G., Ruparel, K., … Gur, R. E. (2016). Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA Psychiatry, 73(5), 515524. doi: 10.1001/jamapsychiatry.2015.3463.CrossRefGoogle ScholarPubMed
Schmidt, S. J., Schultze-Lutter, F., Schimmelmann, B. G., Maric, N. P., Salokangas, R. K., Riecher-Rossler, A., … Ruhrmann, S. (2015). EPA Guidance on the early intervention in clinical high risk states of psychoses. European psychiatry : the Journal of the Association of European Psychiatrists, 30(3), 388404. doi: 10.1016/j.eurpsy.2015.01.013.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F. (2009). Subjective symptoms of schizophrenia in research and the clinic: The basic symptom concept. Schizophrenia Bulletin, 35(1), 58. doi: 10.1093/schbul/sbn139.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F., Addington, J., Ruhrmann, S., & Klosterkotter, J. (2007a). Schizophrenia Proneness Instrument, Adult version (SPI-A). Rom.Google Scholar
Schultze-Lutter, F., Debbane, M., Theodoridou, A., Wood, S. J., Raballo, A., Michel, C., … Uhlhaas, P. J. (2016). Revisiting the basic symptom concept: Toward translating risk symptoms for psychosis into neurobiological targets. Frontiers in Psychiatry, 7, 9. doi: 10.3389/fpsyt.2016.00009.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F., Klosterkotter, J., Picker, H., Steinmeyer, E. M., & Ruhrmann, S. (2007b). Predicting first-episode psychosis by basic symptom criteria. Clinical Neuropsychiatry: Journal of Treatment Evaluation, 4(1), 1122.Google Scholar
Schultze-Lutter, F., Klosterkotter, J., & Ruhrmann, S. (2014). Improving the clinical prediction of psychosis by combining ultra-high risk criteria and cognitive basic symptoms. Schizophrenia Research, 154(1–3), 100106. doi: 10.1016/j.schres.2014.02.010.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F., & Koch, E. (2010). Schizophrenia Proneness Instrument, Child & Youth version (SPI-CY) (Fioriti, G. Ed.). Rom.Google Scholar
Schultze-Lutter, F., Michel, C., Ruhrmann, S., & Schimmelmann, B. G. (2018a). Prevalence and clinical relevance of interview-assessed psychosis-risk symptoms in the young adult community. Psychological Medicine, 48(7), 11671178. doi: 10.1017/S0033291717002586.CrossRefGoogle Scholar
Schultze-Lutter, F., Michel, C., Schmidt, S. J., Schimmelmann, B. G., Maric, N. P., Salokangas, R. K., … Klosterkotter, J. (2015a). EPA Guidance on the early detection of clinical high risk states of psychoses. European Psychiatry: the Journal of the Association of European Psychiatrists, 30(3), 405416. doi: 10.1016/j.eurpsy.2015.01.010.CrossRefGoogle Scholar
Schultze-Lutter, F., Rahman, J., Ruhrmann, S., Michel, C., Schimmelmann, B. G., Maier, W., & Klosterkotter, J. (2015b). Duration of unspecific prodromal and clinical high risk states, and early help-seeking in first-admission psychosis patients. Social Psychiatry and Psychiatric Epidemiology, 50(12), 18311841. doi: 10.1007/s00127-015-1093-3.CrossRefGoogle Scholar
Schultze-Lutter, F., Ruhrmann, S., Fusar-Poli, P., Bechdolf, A., Schimmelmann, B. G., & Klosterkotter, J. (2012). Basic symptoms and the prediction of first-episode psychosis. Current Pharmaceutical Design, 18(4), 351357.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F., Ruhrmann, S., Michel, C., Kindler, J., Schimmelmann, B. G., & Schmidt, S. J. (2020). Age effects on basic symptoms in the community: A route to gain new insight into the neurodevelopment of psychosis? European Archives of Psychiatry and Clinical Neuroscience, 270, 311324. doi:10.1007/s00406-018-0949-4.CrossRefGoogle Scholar
Schultze-Lutter, F., Schmidt, S. J., & Theodoridou, A. (2018b). Psychopathology-a precision tool in need of Re-sharpening. Frontiers in Psychiatry, 9, 446. doi: 10.3389/fpsyt.2018.00446.CrossRefGoogle Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59 (Suppl 20), 22-33;quiz 34-57.Google ScholarPubMed
Sheehan, D. V., Sheehan, K. H., Shytle, R. D., Janavs, J., Bannon, Y., Rogers, J. E., … Wilkinson, B. (2010). Reliability and validity of the Mini international neuropsychiatric interview for children and adolescents (MINI-KID). Journal of Clinical Psychiatry, 71(3), 313326. doi: 10.4088/JCP.09m05305whi.CrossRefGoogle Scholar
Smieskova, R., Allen, P., Simon, A., Aston, J., Bendfeldt, K., Drewe, J., … Borgwardt, S. J. (2012a). Different duration of at-risk mental state associated with neurofunctional abnormalities. A multimodal imaging study. Human Brain Mapping, 33(10), 22812294. doi: 10.1002/hbm.21360.CrossRefGoogle Scholar
Smieskova, R., Fusar-Poli, P., Aston, J., Simon, A., Bendfeldt, K., Lenz, C., … Borgwardt, S. J. (2012b). Insular volume abnormalities associated with different transition probabilities to psychosis. Psychological Medicine, 42(8), 16131625. doi: 10.1017/S0033291711002716.CrossRefGoogle Scholar
Süllwold, L., & Huber, G. (1986). Schizophrene basisstoerungen. Berlin: Springer.CrossRefGoogle Scholar
Tepest, R., Schwarzbach, C. J., Krug, B., Klosterkotter, J., Ruhrmann, S., & Vogeley, K. (2013). Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 263(1), 1524. doi: 10.1007/s00406-012-0343-6.CrossRefGoogle ScholarPubMed
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., … Rapoport, J. L. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 1165011655. doi: 10.1073/pnas.201243998.CrossRefGoogle ScholarPubMed
Vigo, D., Thornicroft, G., & Atun, R. (2016). Estimating the true global burden of mental illness. The Lancet. Psychiatry, 3(2), 171178. doi: 10.1016/S2215-0366(15)00505-2.CrossRefGoogle ScholarPubMed
Weinberg, D., Lenroot, R., Jacomb, I., Allen, K., Bruggemann, J., Wells, R., … Weickert, T. W. (2016). Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. JAMA Psychiatry, 73(12), 12511259. doi: 10.1001/jamapsychiatry.2016.2925.CrossRefGoogle ScholarPubMed
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jonsson, B., … Steinhausen, H. C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(9), 655679. doi: 10.1016/j.euroneuro.2011.07.018.CrossRefGoogle ScholarPubMed
Yung, A. R., Phillips, L. J., McGorry, P. D., McFarlane, C. A., Francey, S., Harrigan, S., … Jackson, H. J. (1998). Prediction of psychosis. A step towards indicated prevention of schizophrenia. The British Journal of Psychiatry. Supplement, 172(33), 1420.CrossRefGoogle ScholarPubMed
Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C., Kahn, R. S., van Engeland, H., & Durston, S. (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin, 38(3), 519530. doi: 10.1093/schbul/sbq113.CrossRefGoogle Scholar
Supplementary material: File

Hubl et al. supplementary material

Hubl et al. supplementary material

Download Hubl et al. supplementary material(File)
File 37.6 KB