Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T04:43:48.276Z Has data issue: false hasContentIssue false

Stability of the interface in a model of phase separation*

Published online by Cambridge University Press:  14 November 2011

A. De Masi
Affiliation:
Dipartimento di Matematica Pura e Applicata, Universita di L'Aquila, Coppito 67100 L'Aquila, ItalyE-mail:[email protected]
E. Orlandi
Affiliation:
Dipartimento di Matematica Pura e Applicata, Universita di L'Aquila, Coppito 67100 L'Aquila, ItalyE-mail:[email protected]
E. Presutti
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, ItalyE-mail:[email protected]; [email protected]
L. Triolo
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, ItalyE-mail:[email protected]; [email protected]

Extract

The paper is concerned with the asymptotic behaviour of the solutions to a nonlocal evolution equation which arises in models of phase separation. As in the Allen–Cahn equations, stationary spatially nonhomogeneous solutions exist, which represent the interface profile between stable phases. Local stability of these interface profiles is proved.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Comets, F., Eisele, Th. and Schatzman, M.. On secondary bifurcations for some nonlinear convolution equations. Trans. Amer. Math. Soc. 296 (1986), 661702.CrossRefGoogle Scholar
2Dal, R.. Passo and de Mottoni, P.. The heat equation with a nonlocal density dependent advection term (preprint, 1991).Google Scholar
3DeMasi, A., Orlandi, E., Presutti, E. and Triolo, L.. Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994), 167.Google Scholar
4De, A. Masi, Orlandi, E., Presutti, E. and Triolo, L.. Glauber evolution with Kac potentials: II. Spinodal decomposition (CARR Reports n.28/92, 1992).Google Scholar
5Fife, P. and McLeod, J. B.. The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Rational Mech. Anal. 65 (1977), 335361.CrossRefGoogle Scholar
6Gobron, T.. Magnetization profiles in one dimensional Kac potentials (CARR Reports n. 12/92, 1992).Google Scholar
7Lawler, G. F. and Sokal, A.. Bounds on the L2 spectrum for Markov chains and Markov Processes: a generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309 (1988), 557580.Google Scholar
8Lebowitz, J. L. and Penrose, O.. Rigorous treatment of the Van der Waals–Maxwell theory of the liquid vapour transition. J. Math. Phys. 7 (1966), 98113.CrossRefGoogle Scholar
9.Penrose, O.. A mean field equation of motion for the dynamic Ising model. J. Statist. Phys. 63 (1991), 975986.Google Scholar
10Reed, M. and Simon, B.. Methods of Modern Mathematical Physics, I and IV (Chichester: J. Wiley, 1978).Google Scholar
11Rudin, W.. Real and Complex Analysis (New York: McGraw-Hill, 1970).Google Scholar