Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:59:17.509Z Has data issue: false hasContentIssue false

On the sign of the solutions to some semilinear Dirichlet problems

Published online by Cambridge University Press:  14 November 2011

Vittorio Cafagna
Affiliation:
Istituto di Matematica, Università dell'Aquila, Via Roma 33, 67100 L'Aquila, Italy
Flavio Donati
Affiliation:
Istituto di Matematica, Università dell'Aquila, Via Roma 33, 67100 L'Aquila, Italy

Synopsis

We study the sign of solutions to a class of semilinear Dirichlet problems when the nonlinearity is, for instance, a concave-convex function which interacts with the spectrum of the linear part. We are able to prove, in some cases, exact multiplicity results for positive and negative solutions. For the proofs we employ a device which splits the given problem into two others satisfying a suitable version of the Ambrosetti–Prodi result.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. On the existence of positive solutions of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21 (1971), 125146.CrossRefGoogle Scholar
2Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620709.CrossRefGoogle Scholar
3Amann, H. and Hess, P.. A multiplicity result for a class of elliptic boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 145151.CrossRefGoogle Scholar
4Ambrosetti, A.. Global inversion theorems and applications to nonlinear problems. Atti SAFA III, Conf. Sem. Mat. Univ. Bari 164 (1979), 211232.Google Scholar
5Ambrosetti, A. and Mancini, G.. Sharp nonuniqueness results for some nonlinear problems. Nonlinear Anal. T.M.A. 3–5 (1979), 635645.CrossRefGoogle Scholar
6Ambrosetti, A. and Prodi, G.. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93 (1972), 231246.CrossRefGoogle Scholar
7Berestycki, H.. Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Fund. Anal. 40 (1981), 129.CrossRefGoogle Scholar
8Berger, M. S. and Podolak, E.. On the solutions of a nonlinear Dirichlet problem. Indiana Univ. Math. J. 24–9 (1975), 837846.CrossRefGoogle Scholar
9Castro, A and Lazer, A. C.. Critical point theory and the number of solutions of a nonlinear Dirichlet problem. Ann. Mat. Pura Appl. 120 (1979), 113137.CrossRefGoogle Scholar
10Clément, Ph. and Peletier, L. A.. An anti-maximum principle for second-order elliptic operators. J. Differential Equations 34 (1979), 218229.CrossRefGoogle Scholar
11Courant, R. and Hubert, D.. Methods of mathematical physics, Vols I, II (New York: Interscience, 1953, 1962).Google Scholar
12Gallou, T.ët and Kavian, O.. Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini. Ann. Fac. Sci. Toulouse 3 (1981), 201246.CrossRefGoogle Scholar
13Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order (New York: Springer, 1977).CrossRefGoogle Scholar
14Kazdan, J. K. and Warner, F. W.. Remarks on some quasilinear elliptic equations. Comm. Pure Appl. Math. 28 (1975), 567597.CrossRefGoogle Scholar
15Manes, A. and Micheletti, A. M.. Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 7–4 (1973), 285301.Google Scholar
16Nirenberg, L.. Topics in nonlinear functional analysis (Lecture Notes, Courant Institute, New York, 1974).Google Scholar
17Prodi, G. and Ambrosetti, A.. Analisi non lineare (I Quaderno, Scuola Normale Superiore, Pisa, 1979).Google Scholar
18Sattinger, D. H.. Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972), 9791000.CrossRefGoogle Scholar