Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:57:09.109Z Has data issue: false hasContentIssue false

Very high energy neutrino expectation from Fanaroff-Riley I sources

Published online by Cambridge University Press:  24 March 2015

Antonio Marinelli
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510 México D.F., México email: [email protected], [email protected]
Nissim Fraija
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510 México D.F., México email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fanaroff-Riley I radiogalaxies have been observed in TeV gamma-rays during the last decades. The origin of the emission processes related with this energy band is still under debate. Here we consider the case of the two closest Fanaroff-Riley I objects: Centaurus A and M87. Their entire broadband spectral energy distributions and variability fluxes show evidences that leptonic models are not sufficient to explain their fluxes above 100 GeV. Indeed, both objects have been imaged by LAT instrument aboard of Fermi telescope with measured spectra well connected with one-zone leptonic models. However, to explain the TeV spectra obtained with campaigns by H.E.S.S., for Centaurus A, and by VERITAS, MAGIC and H.E.S.S. for M87, different emission processes must be introduced. In this work we introduce hadronic scenarios to describe the TeV gamma-ray fluxes observed and to obtain the expected neutrino counterparts for each considered TeV campaign. With the obtained neutrino spectra we calculate, through Monte Carlo simulations, the expected neutrino event rate in a hypothetical Km3 neutrino telescope and we compare the results with what has been observed by IceCube experiment up to now.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abdo, A. A., et al. 2009, ApJ, 707, 55Google Scholar
Acciari, V. A., Beilicke, M., Blaylock, G., et al. 2008, ApJ, 679, 397Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, Science, 314, 1424Google Scholar
Aharonian, F., Akhperjanian, A. G., Anton, G., et al. 2009, ApJL, 695, L40Google Scholar
Aharonian, F. A. 2002, MNRAS, 332, 215Google Scholar
Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. 2012, A&A, 544, A96Google Scholar
Atoyan, A. M. & Dermer, C. D. 2003, ApJ, 586, 79Google Scholar
Becker, J. K. 2008, Phys. Rep., 458, 173CrossRefGoogle Scholar
Bicknell, G. V. 1985, PASA, 6, 130Google Scholar
Bird, S., Harris, W. E., Blakeslee, J. P., & Flynn, C. 2010, A&A, 524, A71Google Scholar
Fraija, N. 2014, ApJ, 783, 44Google Scholar
Fraija, N. 2014b, MNRAS, 441, 1209CrossRefGoogle Scholar
Fraija, N., Gonález, M. M., & Pérez, M. 2012a, in Gamma-Ray Bursts 2012 Conference (GRB 2012)Google Scholar
Fraija, N., González, M. M., Perez, M., & Marinelli, A. 2012b, ApJ, 753, 40Google Scholar
Grindlay, J. E., Helmken, H. F., Brown, R. H., Davis, J., & Allen, L. R. 1975, ApJ, 201, 82Google Scholar
Israel, F. P. 1998, A&AR, 8, 237Google Scholar
JANZOS Collaboration, Allen, W. H., Bond, I. A., et al. 1993, Astroparticle Physics, 1, 269CrossRefGoogle Scholar
Kabuki, S., Enomoto, R., Bicknell, G. V., et al. 2007, ApJ, 668, 968Google Scholar
Rieger, F. M., Bosch-Ramon, V., & Duffy, P. 2007, ApSS, 309, 119Google Scholar
Steinle, H., Bennett, K., Bloemen, H., et al. 1998, A&A, 330, 97Google Scholar
Waxman, E. & Bahcall, J. 1997, PRL, 78, 2292Google Scholar