No CrossRef data available.
Published online by Cambridge University Press: 27 November 2018
The observed convective flows on the photosphere (e.g., supergranulation, granulation) play a key role in the Babcock-Leighton (BL) process to generate large scale polar fields from sunspots fields. In most surface flux transport (SFT) and BL dynamo models, the dispersal and migration of surface fields is modeled as an effective turbulent diffusion. We present the first kinematic 3D FT/BL model to explicitly incorporate realistic convective flows based on solar observations. The results obtained are generally in good agreement with the observed surface flux evolution and with non-convective models that have a turbulent diffusivity on the order of 3 × 1012 cm2 s−1 (300 km2 s−1). However, we find that the use of a turbulent diffusivity underestimates the dynamo efficiency, producing weaker mean fields and shorter cycle.