Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T20:42:31.953Z Has data issue: false hasContentIssue false

Stellar Magnetic Dynamos and Activity Cycles

Published online by Cambridge University Press:  07 August 2014

Nicholas J. Wright*
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield, AL10 9AB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a new uniform sample of 824 solar and late-type stars with measured X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity that is believed to be a probe of the underlying stellar dynamo. Using an unbiased subset of the sample we calculate the power law slope of the unsaturated regime of the activity – rotation relationship as LX / Lbol ∝ Roβ, where β = − 2.70 ± 0.13. This is inconsistent with the canonical β = − 2 slope to a confidence of 5σ and argues for an interface-type dynamo. We map out three regimes of coronal emission as a function of stellar mass and age, using the empirical saturation threshold and theoretical super-saturation thresholds. We find that the empirical saturation timescale is well correlated with the time at which stars transition from the rapidly rotating convective sequence to the slowly rotating interface sequence in stellar spin-down models. This may be hinting at fundamental changes in the underlying stellar dynamo or internal structure. We also present the first discovery of an X-ray unsaturated, fully convective M star, which may be hinting at an underlying rotation - activity relationship in fully convective stars hitherto not observed. Finally we present early results from a blind search for stellar X-ray cycles that can place valuable constraints on the underlying ubiquity of solar-like activity cycles.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barnes, S. A. 2003, ApJ, 586, 464CrossRefGoogle Scholar
Donahue, R. A., Saar, S. H., & Baliunas, S. L. 1996, ApJ, 466, 384Google Scholar
Favata, F., Micela, G., Orlando, S., et al. 2008, A&A, 490, 1121Google Scholar
Hoffman, J., Günther, H. M., & Wright, N. J. 2012, ApJ, 759, 145CrossRefGoogle Scholar
Hynes, R. I., et al., 2012, ApJ, 761, 162CrossRefGoogle Scholar
Jardine, M. & Unruh, Y. C. 1999, A&A, 346, 883Google Scholar
Micela, G., et al., 1985, ApJ, 292, 172Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763Google Scholar
Pallavicini, R., Golub, L., Rosner, R., Vaiana, G. S., Ayres, T., & Linsky, J. L. 1981, ApJ, 248, 279Google Scholar
Parker, E. N. 1955, ApJ, 122, 293Google Scholar
Parker, E. N. 1993, ApJ, 408, 707Google Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147Google Scholar
Skumanich, A. 1972, ApJ, 171, 565Google Scholar
Stȩpień, K., Schmitt, J. H. M. M., & Voges, W. 2001, A&A, 370, 157Google Scholar
Vaiana, G. S., et al., 1981, ApJ, 245, 163CrossRefGoogle Scholar
Wright, N. J., Drake, J. J., & Civano, F. 2010, ApJ, 725, 480Google Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W., 2011, ApJ, 743, 48CrossRefGoogle Scholar