Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:18:42.307Z Has data issue: false hasContentIssue false

Statistical relationship between solar flares and coronal mass ejections

Published online by Cambridge University Press:  01 September 2008

Seiji Yashiro
Affiliation:
Interferometrics Inc., Herndon, Virginia 20171, USA email: [email protected] NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA email: [email protected] The Catholic University of America, Washington, DC 20771, USA
Nat Gopalswamy
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the statistical relationships between solar flares and coronal mass ejections (CMEs) observed during 1996-2007 inclusively. We used soft X-ray flares observed by the Geostationary Operational Environmental Satellite (GOES) and CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) mission. Main results are (1) the CME association rate increases with flare's peak flux, fluence, and duration, (2) the difference between flare and CME onsets shows a Gaussian distribution with the standard deviation σ = 17 min (σ = 15 min) for the first (second) order extrapolated CME onset, (3) the most frequent flare site is under the center of the CME span, not near one leg (outer edge) of the CMEs, (4) a good correlation was found between the flare fluence versus the CME kinetic energy. Implications for flare-CME models are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Andrews, M. D. 2003, Solar Phys., 218, 261CrossRefGoogle Scholar
Brueckner, G. E., et al. 1995, Solar Phys., 162, 357CrossRefGoogle Scholar
Burkepile, J. T., et al. 2004, J. of Geophys. Res., 109, A03103CrossRefGoogle Scholar
Jing, J., et al. 2005, Astrophys. J., 620, 1085CrossRefGoogle Scholar
Gopalswamy, N. & Thompson, B. J. 2000, JASTP, 62, 1457Google Scholar
Gopalswamy, N., et al. 2003, Astrophys. J., 586, 562CrossRefGoogle Scholar
Harrison, R. A. 1986, Astron. Astrophys., 162, 283Google Scholar
Harrison, R. A. 1995, Astron. Astrophys., 304, 585Google Scholar
Harrison, R. A. & Sime, D. G. 1989, Astron. Astrophys., 208, 274.Google Scholar
Harrison, R. A., et al. 1990, J. of Geophys. Res., 95, 917CrossRefGoogle Scholar
Howard, R. A., et al. 1982, Astrophys. J., 263, L101CrossRefGoogle Scholar
Hundhausen, A. J. 1997, AGU Monograph, 99, 1Google Scholar
Kahler, S. W. 1992, ARAA, 30, 113CrossRefGoogle Scholar
Kahler, S. W., et al. 1989, Astrophys. J., 344, 1026CrossRefGoogle Scholar
Moon, Y.-J., et al. 2002, Astrophys. J., 581, 694CrossRefGoogle Scholar
Munro, R. H. et al. 1979, Solar Phys., 61, 201CrossRefGoogle Scholar
Veronig, A., et al. 2002, Astron. Astrophys., 382, 1070CrossRefGoogle Scholar
Vršnak, , et al. 2004, Solar Phys., 225, 355CrossRefGoogle Scholar
Yashiro, S., et al. 2004, J. of Geophys. Res., 109, 7105CrossRefGoogle Scholar
Yashiro, S., et al. 2005, J. of Geophys. Res., 110, A12S05CrossRefGoogle Scholar
Yashiro, S., et al. 2006, Astrophys. J., 650, L143CrossRefGoogle Scholar
Yashiro, S., et al. 2008, Astrophys. J., 673, 1174CrossRefGoogle Scholar
Zhang, J., et al. 2001, Astrophys. J., 559, 452CrossRefGoogle Scholar