Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:06:11.991Z Has data issue: false hasContentIssue false

Starburst and old population in z=3.8 radio galaxies with Pégase.3

Published online by Cambridge University Press:  17 July 2013

Brigitte Rocca-Volmerange
Affiliation:
Institut d' Astrophysique de Paris, UPMC/CNRS, 98bis Bd Arago, F-75014 Paris, France email: [email protected]
Guillaume Drouart
Affiliation:
Institut d' Astrophysique de Paris, UPMC/CNRS, 98bis Bd Arago, F-75014 Paris, France email: [email protected] European Southern Observatory, Karl Schwarzschild Strasse, 85748 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Distant radio galaxies, hosted by massive ellipticals, follow the galaxy evolution process on an extremely large (0 ≥ z ≥7) time-scale ≥ 1012Gyrs, up to primeval galaxies. The new evolutionary code Pégase.3 predicts on similar time-scales, the coupled stellar and dust emissions of various galaxy types: starbursts and Hubble sequence types. All z=0 templates are fitted on local observations at ages ≃13 Gyrs (except irregulars at 9 Gyrs). The multi-λ spectral energy distributions (SEDs) of two z=3.8 radiogalaxies, including the most recent Herschel data from the HeRGÉ consortium, are interpreted in the observer's frame by Rocca-Volmerange et al. (2012) with Pégase.3. The apparent SEDs are fitted at best with the sum of a young starburst and an older early-type population, an AGN simple model is taken into account. These results favor massive gas-rich mergers at work in evolved galaxies at z≃4. Massive starbursts would be at the origin of galaxy evolution initiated at the earliest epochs (zfor≥10). The possible relation with super massive black holes is still debated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

De Breuck, C., van Breugel, W., Stanford, S. A., et al. 2002, AJ, 123, 637Google Scholar
Drouart, G., De Breuck, C., Vernet, J., Laing, R. A., Seymour, N.et al. 2012, A&A, 548, 45Google Scholar
Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Fioc, M., Rocca-Volmerange, B. & Dwek, E. 2012, in preparationGoogle Scholar
Lacy, M., Bunker, A. J., & Ridgway, S. E. 2000, ApJ (Letters), 120, L68CrossRefGoogle Scholar
Papovich, C., Dole, H., Egami, E., Le Floc'h, E., Pérez-Gonzàlez, P. G., et al. 2004, ApJS, 154, 70Google Scholar
Pentericci, L., McCarthy, P., Röttgering, H., et al. 2001, ApJS, 135, 63Google Scholar
Rocca-Volmerange, B. & Guiderdoni, B. 1988, A&AS, 75, 93Google Scholar
Rocca-Volmerange, B., Le Borgne, D., De Breuck, C., Fioc, M., & Moy, E. 2004, A&A, 415, 931Google Scholar
Rocca-Volmerange, B., de Lapparent, V., Seymour, N., & Fioc, M. 2007, A&A, 475, 801Google Scholar
Seymour, N., Rocca-Volmerange, B., & de Lapparent, V. 2007, A&A, 475, 791Google Scholar
Seymour, N., Altieri, B., De Breuck, C., et al. 2012, ApJ, 755, 146Google Scholar
van Breugel, W., Stanford, S., Spinrad, H., et al. 1998, ApJ, 502, 614CrossRefGoogle Scholar