Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T21:59:13.948Z Has data issue: false hasContentIssue false

Spectral energy distributions of quasars selected in the mid-infrared

Published online by Cambridge University Press:  17 August 2012

M. Lacy
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA22903, USA email: [email protected]
A. Sajina
Affiliation:
Dept. of Physics and Astronomy, Tufts University, Medford, MA02155
A. O. Petric
Affiliation:
Department of Astronomy, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA91125, USA
S. E. Ridgway
Affiliation:
National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ85719, USA
D. M. Nielsen
Affiliation:
Dept. of Astronomy, University of Wisconsin, Madison, WI53706
T. Urrutia
Affiliation:
Liebnitz Institut für Astrophysik Astrophysics Potsdam, An der Sternwarte 16, 14482, Potsdam, Germany
D. Farrah
Affiliation:
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK
E. L. Gates
Affiliation:
UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA95064
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present preliminary results on fitting of SEDs to 142 z < 1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly a one of the type-2s require a very hot dust component in addition to the normal torus emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Antonucci, R. 1993, ARA&A, 31, 473Google Scholar
de Breuck, C. et al. 2010, ApJ, 725, 36CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., & Keres, D. 2008, ApJS, 175, 356CrossRefGoogle Scholar
Kukula, M. J., Dunlop, J. S., McLure, R. J., Miller, L., Percival, W. J., Baum, S. A., & O'Dea, C. P. 2001, MNRAS, 326, 1533CrossRefGoogle Scholar
Lacy, M. et al. 2004, ApJS, 154, 166CrossRefGoogle Scholar
Lacy, M., Petric, A. O., Sajina, A., Canalizo, G., Storrie-Lombardi, L. J., Armus, L., Fadda, D., & Marleau, F. R. 2007, AJ, 133, 186CrossRefGoogle Scholar
Lacy, M., Petric, A. O., Martínez-Sansigre, A., Ridgway, S. E., Sajina, A., Urrutia, T., & Farrah, D. 2011, AJ, 142, 196CrossRefGoogle Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Mor, R. & Trakhtenbrot, B. 2011, ApJ, 737, L36.CrossRefGoogle Scholar
Netzer, H. et al. 2007, ApJ, 666, 806CrossRefGoogle Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer, G., & Scoville, N. Z. 1988, ApJ, 328, L35.CrossRefGoogle Scholar
Schumacher, H. et al. 2012, MNRAS, submittedGoogle Scholar