Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:28:50.152Z Has data issue: false hasContentIssue false

On the solution of the Kompaneets equation in cosmological context: a numerical code to predict the CMB spectrum under general conditions

Published online by Cambridge University Press:  08 June 2011

C. Burigana
Affiliation:
INAF - IASF Bologna, Via P. Gobetti 101, 40129 Bologna
P. Procopio
Affiliation:
INAF - IASF Bologna, Via P. Gobetti 101, 40129 Bologna
A. De Rosa
Affiliation:
INAF - IASF Bologna, Via P. Gobetti 101, 40129 Bologna
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interpretation of current and future data calls for a continuous improvement in the theoretical modeling of CMB spectrum. We describe the new version of a numerical code, KYPRIX, specifically written to solve the Kompaneets equation in a cosmological context under general assumptions. We report on the equation formalism, and structure and computational aspects of the code. New physical options have been introduced in the current code version: the cosmological constant in the terms controlling the general expansion of the Universe, the relevant chemical abundances, and the ionization history, from recombination to cosmological reionization. We present some of fundamental tests we carried out to verify the accuracy, reliability, and performance of the code. All the tests demonstrate the reliability and versatility of the new code version and its accuracy and applicability to the scientific analysis of current CMB spectrum data and of much more precise measurements that will be available in the future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Berzins, M. 1990, in Scientific Software Systems, eds. Mason, J. C. & Cox, M. G., Chapman & Hall, p. 59Google Scholar
Berzins, M., Dew, P. M., & Furzeland, R. M. 1989, Appl. Numer. Math., 5, 375CrossRefGoogle Scholar
Burigana, C., Danese, L. & de Zotti, G. 1991, A&A, 246, 49Google Scholar
Burigana, C., Danese, L. & de Zotti, G. 1991, ApJ, 379, 1CrossRefGoogle Scholar
Burigana, C., de Zotti, G., & Danese, L. 1995, A&A, 303, 323Google Scholar
Burigana, C. & Salvaterra, R. 2003, MNRAS, 342, 543CrossRefGoogle Scholar
Burigana, C., et al. . 2008, MNRAS, 385, 404Google Scholar
Chang, J. S. & Cooper, G. 1970, J. Comput. Phys., 6, 1Google Scholar
Danese, L., Burigana, C. 1993, in Present and Future of the Cosmic Microwave Background, Lecture in Physics, Vol. 429, eds. Sanz, J. L. et al. ., Springer, Heidelberg (FRG), p. 28Google Scholar
Dew, P. M., Walsh, J. 1981, ACM Trans. Math. Software, 7, 295CrossRefGoogle Scholar
Fixsen, D. J., et al. . 1996, ApJ, 473, 576CrossRefGoogle Scholar
Fixsen, D. J., Mather, J. C. 2002, ApJ, 581, 817CrossRefGoogle Scholar
Gould, R. J. 1984, ApJ, 285, 275Google Scholar
Karzas, W. J., Latter, R. 1961, ApJS, 6, 167Google Scholar
Kompaneets, A. S. 1956, Zh. Eksp. Teor. Fiz., 31, 876 [Sov. Phys. JEPT, 4, 730, (1957)]Google Scholar
Mather, J. C. 2009, in Questions of Modern Cosmology – Galileo's Legacy, eds. D'Onofrio, M. & Burigana, C., Springer, Sect. 5.3.1, p. 435Google Scholar
The Numerical Algorithms Group Ltd 2009, Oxford, UKGoogle Scholar
Peyraud, N. 1968, Physics Letters A, 27, 410Google Scholar
Procopio, P. & Burigana, C. 2009, A&A, 507, 1243Google Scholar
Rybicki, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics, Wiley, New YorkGoogle Scholar
Seager, S., Sasselov, D. D., Scott, D. 1999, ApJ, 523, L1Google Scholar
Skeel, R. D. & Berzins, M. 1990, SIAM J. Sci. Statist. Comput., 11 (1), 1CrossRefGoogle Scholar
Zeldovich, Y. B. & Levich, E. V. 1970, Zh. Eksp. Teor. Fiz., 11, 57Google Scholar
Zizzo, A. & Burigana, C. 2005, New Astronomy, 11, 1CrossRefGoogle Scholar