Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:44:49.610Z Has data issue: false hasContentIssue false

On the importance of partial frequency redistribution in modeling the scattering polarization

Published online by Cambridge University Press:  24 July 2015

K. N. Nagendra*
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well-known that partial frequency redistribution (PRD) is the basic physical mechanism to correctly describe radiative transfer in spectral lines. In the case of polarized line scattering, the PRD becomes particularly important to describe the line-wing polarization, instead of the well-known mechanism of complete redistribution (CRD). Historically, the two-level atom PRD scattering matrices for polarized line scattering were first derived in the 1970's, and later generalized to the case of arbitrary fields in 1997. The latter formulation of the PRD matrices have subsequently been used in the solution of the line transfer equation to successfully model the non-magnetic (resonance scattering) and the magnetic (Hanle scattering) polarization observations. In recent years, using the Kramers-Heisenberg approach, we formulated PRD matrices for various physical mechanisms like quantum interference involving fine- and hyperfine-structure states in a two-term atom. The effect of collisions is included in an approximate way. We have used these PRD matrices to model the observed linear polarization in several interesting lines of the Second Solar Spectrum. In this paper I present a few results which highlight the importance of PRD in the interpretation of the polarized Stokes profiles.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Anusha, L. S., Nagendra, K. N., Bianda, M., Stenflo, J. O., Holzreuter, R., Sampoorna, M., Frisch, H., Ramelli, R., & Smitha, H. N. 2011, ApJ 737, 95 Google Scholar
Barklem, P. S. & O'Mara, B. J. 1998, MNRAS 300, 863 Google Scholar
Bianda, M., Ramelli, R., Anusha, L. S., Stenflo, J. O., Nagendra, K. N., Holzreuter, R., Sampoorna, M., Frisch, H., & Smitha, H. N. 2011, A&A 530, L13 Google Scholar
Bommier, V. 1997a, A&A 328, 706 Google Scholar
Bommier, V. 1997b, A&A 328, 726 Google Scholar
Bommier, V. 2014, in: Nagendra, K. N., Stenflo, J. O. Qu, Z. Q., & Sampoorna, M. (eds.), Solar Polarization 7, ASP Conf. Series 489 (San Francisco: ASP), p. 195 Google Scholar
Bommier, V. & Stenflo, J. O. 1999, A&A 350, 327 Google Scholar
Carlin, E. S. & Asensio Ramos, A. 2015, ApJ 801, 16 CrossRefGoogle Scholar
Casini, R., Landi Degl'Innocenti, M., Manso Sainz, R., Landi Degl'Innocenti, E., & Landolfi, M. 2014, ApJ 791, 94 Google Scholar
Derouich, M. 2008, A&A 481, 845 Google Scholar
Faurobert, M., Derouich, M., Bommier, V., & Arnaud, J. 2009, A&A 493, 201 Google Scholar
Fontenla, J. M., Avrett, E. H., & Loeser, R. 1993, ApJ 406, 319 CrossRefGoogle Scholar
Holzreuter, R., Fluri, D. M., & Stenflo, J. O. 2005, A&A 434, 713 Google Scholar
Landi Degl'Innocenti, E., Landi Degl'Innocenti, M., & Landolfi, M. 1997, in: Mein, N., & Sahal-Bréchot, S. (eds.), Science with THÉMIS, Proc. Forum THÉMIS (Paris: Obs. Paris-Meudon), p. 59 Google Scholar
Landi Degl'Innocenti, E. & Landolfi, M. 2004, Polarization in spectral lines, Kluwer, Dordrecht Google Scholar
Sampoorna, M. 2011, ApJ 731, 114 Google Scholar
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007a, ApJ 663, 625 Google Scholar
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007b, ApJ 670, 1485 CrossRefGoogle Scholar
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2013, ApJ 770, 92 Google Scholar
Smitha, H. N., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2013a, JQSRT 115, 46 CrossRefGoogle Scholar
Smitha, H. N., Nagendra, K. N., Stenflo, J. O., Bianda, M., Sampoorna, M., Ramelli, R., & Anusha, L. S. 2012b, A&A 541, A24 Google Scholar
Smitha, H. N., Nagendra, K. N., & Stenflo, Sampoorna, M. 2013b, ApJ 768, 163 Google Scholar
Smitha, H. N., Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2011a, ApJ 733, 4 Google Scholar
Smitha, H. N., Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2012a, ApJ 758, 112 Google Scholar
Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2014b, ApJ 793, 71 CrossRefGoogle Scholar
Sowmya, K., Nagendra, K. N., Stenflo, J. O., & Sampoorna, M. 2014a, ApJ 786, 150 Google Scholar
Stenflo, J. O. 1980, A&A 84, 68 Google Scholar
Stenflo, J. O. 1994, Solar magnetic fields - Polarized radiation diagnostics, Kluwer, Dordrecht CrossRefGoogle Scholar
Stenflo, J. O. 1997, A&A 324, 344 Google Scholar
Stenflo, J. O. & Keller, C. U. 1997, A&A 321, 927 Google Scholar
Trujillo Bueno, J. 2001, in: Sigwarth, M. (ed.), Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ASP ASP Conf. Series 236 (San Francisco: ASP), p. 161Google Scholar
Trujillo Bueno, J., Landi Degl'Innocenti, E., Collados, M., Merenda, L., & Manso Sainz, R. 2002, Nature 415, 403 Google Scholar
Uitenbroek, H. 2001, ApJ 557, 389 CrossRefGoogle Scholar