Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T15:59:42.787Z Has data issue: false hasContentIssue false

On the chemical evolution of the Milky Way

Published online by Cambridge University Press:  01 June 2008

Nikos Prantzos*
Affiliation:
IAP, 98bis Bd Arago, 75013 Paris; email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss three different topics concerning the chemical evolution of the Milky Way (MW). 1) The metallicity distribution of the MW halo; it is shown that this distribution can be analytically derived in the framework of the hierarchical merging scenario for galaxy formation, assuming that the component sub-haloes had chemical properties similar to those of the progenitors of satellite galaxies of the MW. 2) The age-metallicity relationship (AMR) in the solar neighborhood; I argue for caution in deriving from data with important uncertainties (such as the age uncertainties in the Geneva-Copenhagen Survey) a relationship between average metallicity and age: derived relationships are shown to be systematically flatter than the true ones and should not be directly compared to models. 3) The radial mixing of stars in the disk, which may have important effects on various observables (scatter in AMR, extension of the tails of the metallicity distribution, flatenning of disk abundance profiles). Recent SPH + N-body simulations find considerable radial mixing, but only comparison to observations will ultimately determine the extent of that mixing.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bekki, K. & Chiba, M., 2001, ApJ 558, 666CrossRefGoogle Scholar
Bell, E., Zuker, D., & Belokurov, V., 2008, ApJ 680, 295CrossRefGoogle Scholar
Boissier, S. & Prantzos, N., 1999, MNRAS 307, 857CrossRefGoogle Scholar
Edvardsson, B., Andersen, J., Gustaffson, B., et al. , 1993, A&A 275, 101Google Scholar
Dekel, A. & Woo, J., 2003, MNRAS 344, 1131CrossRefGoogle Scholar
Diemand, J., Kuhlen, M., & Madau, P., 2007, ApJ 667, 859CrossRefGoogle Scholar
Feltzing, S., Holmberg, J., & Hurley, J. R., A&A 377, 911CrossRefGoogle Scholar
Font, A., Johnston, K., Bullock, J., & Robertson, B., 2006, ApJ, 638, 585CrossRefGoogle Scholar
Giocoli, C., Pieri, L., & Tormen, G. 2008, MNRAS 387, 689CrossRefGoogle Scholar
Goswami, A. & Prantzos, N., 2000, A&A 359, 151Google Scholar
Hartwick, F., 1976, ApJ 209, 418CrossRefGoogle Scholar
Haywood, M., 2006, MNRAS 371, 176CrossRefGoogle Scholar
Haywood, M., 2008, MNRAS 388, 1175CrossRefGoogle Scholar
Heller, C., Shlosman, I., & Athanassoula, E., 2007, ApJ 671, 226CrossRefGoogle Scholar
Helmi, A., Irwin, M., Tolstoy, E., et al. , 2006, ApJ 651, L121CrossRefGoogle Scholar
Holmberg, J., Norström, B., & Andersen, J., 2007, A&A 475, 519Google Scholar
Kroupa, P., 2002, Science 295, 82CrossRefGoogle Scholar
Lepine, J. R. D., Acharova, I. A., & Mishurov, Y. N., 2003, ApJ 589, 210CrossRefGoogle Scholar
Mayor, M., 1974, A&A 32, 321Google Scholar
Nordström, B., Mayor, M., & Andersen, J., et al. , AA418, 989CrossRefGoogle Scholar
Pagel, B., 1997, “Nucleosynthesis and galactic chemical evolution” (Cambidge University Press)Google Scholar
Prantzos, N. 2003, A&A 404, 211Google Scholar
Prantzos, N. 2007a, in “Stellar Nucleosynthesis: 50 years after B2FHrdquo;, Charbonnel, C. and Zahn, J.P. (Eds.), EAS publications Series (arXiv:0709.0833)Google Scholar
Prantzos, N. 2007b, in “CRAL-2006: Chemodynamics, from first stars to local galaxies”, Emsellem, E. et al. (Eds.), EAS publications Series Vol. 24, p. 3 (arXiv:astro-ph/0611476)Google Scholar
Prantzos, N. 2008, A&A in press (arXiv:0807.1502)Google Scholar
Roskar, R., Debattista, V., Stinson, G., et al. , 2008, ApJ 675, L65CrossRefGoogle Scholar
Ryan, S. & Norris, J., 1991, AJ 101, 1865CrossRefGoogle Scholar
Salvadori, S, Schneider, R., & Ferrara, A., 2007, MNRAS 381, 647CrossRefGoogle Scholar
Salvadori, S, Ferrara, A., & Schneider, R., 2008, MNRAS 361, 348CrossRefGoogle Scholar
Scanapieco, E. & Broadhurst, T., 2001, ApJ 550, L39CrossRefGoogle Scholar
Sellwood, J. & Binney, J., 2002, MNRAS 336, 785CrossRefGoogle Scholar
Shetrone, M., Coté, P., & Sargent, W., 2001, ApJ 548, 592CrossRefGoogle Scholar
Soubiran, C. & Girard, P., 2005, A&A 438, 139Google Scholar
Soubiran, C., Bienaymé, O., Mishenina, T. V., & Kovtyukh, V. V. 2008, A&A 480, 91Google Scholar
Tumlinson, J., 2006, ApJ 641, 1CrossRefGoogle Scholar
Twarog, B. A., 1980, ApJ 242, 242CrossRefGoogle Scholar
Venn, K., Irwin, M., & Shetrone, M., et al. , 2004, ApJ 128, 1177CrossRefGoogle Scholar
Wielen, R., Fuchs, B., & Dettbarn, C., 1996, A&A 314, 438Google Scholar