Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T12:41:17.389Z Has data issue: false hasContentIssue false

Magnetic higher-mass stars in the early stages of their evolution

Published online by Cambridge University Press:  07 August 2014

Jason H. Grunhut
Affiliation:
ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany email: [email protected]
E. Alecian
Affiliation:
UJF-Grenoble 1 CNRS-INSU, IPAG, UMR 5274, Grenoble, F-38041, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the past decade, significant investigations have been made through the use of high-resolution spectropolarimetry to probe the surface magnetic field characteristics of young higher-mass (M ≳ 1.5 M) stars from pre-main sequence to zero-age main sequence evolutionary phases. The results of these observational campaigns suggest that these young higher-mass stars host similar magnetic properties to their main sequence descendants - strong, stable, globally-ordered fields that are detected in approximately 10 percent of all stars. This strongly contrasts with lower-mass stars, where it is generally accepted that a solar-like dynamo is in operation that generates more complex, globally-weak fields that are ubiquitous. The consensus is magnetic fields in higher-mass stars are fossil remnants of a magnetic field present in the molecular cloud, or generated very early during stellar formation. This review discusses the spectropolarimetric observations of higher-mass stars and how these observations have guided our current understanding of the magnetic characteristics of young higher-mass stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abt, H. A. & Snowden, M. S. 1973, ApJS, 25, 137Google Scholar
Alecian, E., et al. 2008a, MNRAS, 385, 391Google Scholar
Alecian, E., et al. 2008b, A&A, 481, 99Google Scholar
Alecian, E., et al. 2009, MNRAS, 400, 354Google Scholar
Alecien, E., et al. 2013, MNRAS, 429, 1001Google Scholar
Aurière, . et al. 2007, A&A, 475, 1053Google Scholar
Bailey, J. D., et al. 2012, MNRAS, 423, 328CrossRefGoogle Scholar
Babcock, H. W. 1947, ApJ, 105, 105Google Scholar
Babcock, H. W. 1960, ApJ, 132, 521Google Scholar
Bagnulo, S., Landstreet, J. D., Mason, E., Andretta, V., Silaj, J., & Wade, G. A. 2006, A&A, 450, 777Google Scholar
Behrend, R. & Maeder, A. 2001, A&A, 373, 190Google Scholar
Berdyugina, S. V. 2005, Living Reviews in Solar Physics, 2, 8Google Scholar
Bohlender, D., Landstreet, J., Brown, D., & Thompson, I. 1987, ApJ, 323, 325Google Scholar
Bouret, J.-C., Donati, J.-F., Martins, F., Escolano, C., Marcolino, W., Lanz, T., & Howarth, I. 2008, MNRAS, 389, 75CrossRefGoogle Scholar
Braithwaite, J. 2009, MNRAS, 397, 763Google Scholar
Brott, I., et al. 2011, A&A, 530, 115Google Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461Google Scholar
Bychkov, V. D., Bychkova, L. V., & Madej, J. 2009, MNRAS, 394, 1338Google Scholar
Cantiello, M., Langer, N., Brott, I., de Koter, A., Shore, S. N., Vink, J. S., Voegler, A., Lennon, D. J., & Yoon, S.-C. 2009, A&A, 499, 279Google Scholar
Cantiello, M. & Braithwaite, J. 2011, A&A, 534, 140Google Scholar
Carrier, F., North, P., Udry, S., & Babel, J. 2002, A&A, 394, 151Google Scholar
Charbonneau, P. & MacGregor, K. B. 2001, ApJ, 559, 1094CrossRefGoogle Scholar
Charbonneau, P. 2005, Living Reviews in Solar Physics, 2, 2Google Scholar
Christensen, U. R., Holzwarth, V., & Reiners, A. 2009, Nature, 457, 167Google Scholar
Cowling, T. G. 1945, MNRAS, 105, 166Google Scholar
de Winter, D., Koulis, C., Theé, P. S., van den Ancker, M. E., Pérez, M. R., & Bibo, E. A. 1997, A&AS, 121, 223Google Scholar
Donati, J.-F., Semel, M., Carter, B., Rees, D. & Collier Cameron, A. 1997, MNRAS, 291, 658CrossRefGoogle Scholar
Donati, J.-F., Babel, J., Harries, T., Howarth, I., Petit, P., & Semel, M. 2002, MNRAS, 333, 55Google Scholar
Donati, J.-F., Howarth, I. D., Bouret, J.-C., Petit, P., Catala, C., & Landstreet, J. 2006, MNRAS, 365, 6CrossRefGoogle Scholar
Donati, . et al. 2008, MNRAS, 390, 545Google Scholar
Donati, J.-F. & Landstreet, J. 2009, AR A&A, 47, 333Google Scholar
Duez, V. & Mathis, S. 2010, A&A, 517, 58Google Scholar
Elkin, V. G., Mathys, G., Kurtz, D. W., Hubrig, S., & Freyhammer, L. M. 2010, MNRAS, 402, 1883Google Scholar
Elkin, V. G., Kurtz, D. W., Mathys, G., & Freyhammer, L. M. 2010, MNRAS, 404, 1883Google Scholar
Featherstone, N. A., Browning, M. K., Brun, A. S., & Toomre, J. 2009, ApJ, 705, 1000Google Scholar
Ferrario, L., Pringle, J. E., Tout, C. A., & Wickramasinghe, D. T. 2009, MNRAS, 400, 71CrossRefGoogle Scholar
Freyhammer, L. M., Elkin, V. G., Kurtz, D. W., Mathys, G., & Martinez, P. 2008, MNRAS, 389, 441Google Scholar
Grunhut, J. H., et al. 2012b, MNRAS, 426, 2208CrossRefGoogle Scholar
Grunhut, J. H., et al. 2013, MNRAS, 428, 1686Google Scholar
Kochukhov, O.et al. 2004, A&A, 414, 613Google Scholar
Kochukhov, O. 2006, A&A, 454, 321Google Scholar
Kochukhov, O. & Wade, G. A. 2010, A&A, 513, 13Google Scholar
Korntreff, C., Kaczmarek, T., & Pfalzner, S. 2012, A&A, 543, 126Google Scholar
Landstreet, J. D. 1990, ApJ, 352, 5Google Scholar
Langer, N. 2012, AR A&A, 50, 107Google Scholar
Leone, F., Catanzaro, G., & Catalano, S. 2000, A&A, 355, 315Google Scholar
Lignières, F., Petit, P., Bohm, T., & Aurière, M. 2009, A&A, 500, 41Google Scholar
MacGregor, K. B. & Cassinelli, J. P. 2003, ApJ, 586, 480CrossRefGoogle Scholar
Mestel, L. 2001, ASP-CS, 248, 3Google Scholar
Meynet, G., Eggenberger, P., & Maeder, A. 2011, A&A, 525, 11Google Scholar
Morel, P. 1997, A&AS, 597, 614.Google Scholar
Moss, D. 2001, ASP-CS, 248, 305Google Scholar
Nazé, Y., Bagnulo, S., Petit, V., Rivinius, Th., Wade, G., Rauw, G., & Gangé, M. 2012, MNRAS, 423, 3413CrossRefGoogle Scholar
Palla, F. & Stahler, S. W. 1990, ApJ, 360, 47Google Scholar
Park, B.-G. & Sun, H. 2002, AJ, 123, 892Google Scholar
Parker, E. N. 1955, ApJ, 122, 293Google Scholar
Petit, P.et al. 2011, A&A, 532, 13Google Scholar
Silvester, J., Wade, G. A., Kochukhov, O., Bagnulo, S., Folsom, C. P., & Hanes, D. 2012, MNRAS, 426, 1003CrossRefGoogle Scholar
Spruit, H. 1999, A&A, 349, 189Google Scholar
Stahler, S. W. 1983, ApJ, 274, 822Google Scholar
Sung, H., Bessell, M. S., & Lee, S.-W. 1997, AJ, 114, 2644Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365Google Scholar
Thé, P. S., de Winter, D., & Perez, M. R. 1994, A&AS, 104, 315Google Scholar
Tout, C. A., Wickramasinghe, D. T., LIebert, J., Ferrario, L., & Pringle, J. E. 2008, MNRAS, 387, 897Google Scholar
Tutukov, A. V. & Fedorova, A. V. 2010, Astron. Rep., 51, 156Google Scholar
Vieira, S. L., et al. 2003, AJ, 126, 2971CrossRefGoogle Scholar
Wade, G. A., et al. 2012a, MNRAS, 419, 2459Google Scholar
Wade, G. A., et al. 2012b, MNRAS, 425, 1278Google Scholar
Wade, G. A., Grunhut, J. H. & the MiMeS Collaboration, 2012c, ASP-CS, 464, 405Google Scholar
Walder, R., Folini, D., & Meynet, G. 2012, Space Sci. Revs., 166, 145Google Scholar
Weber, E. & Davis, L. Jr., ApJ, 148, 217Google Scholar