Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:16:39.905Z Has data issue: false hasContentIssue false

Infrared [Fe II] and Dust Emissions from Supernova Remnants

Published online by Cambridge University Press:  29 January 2014

Bon-Chul Koo*
Affiliation:
Department of Physics and Astronomy, Seoul National University, Seoul 151-747, KOREA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H2 emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the “[Fe II]-H2 reversal” in SNRs and on using the [Fe II]-line luminosity as an indicator of the supernova (SN) rate in galaxies. In the mid- and far-infrared regimes, thermal dust emission is dominant. The dust in SNRs can be heated either by collisions with gas species in a hot plasma or by radiation from a shock front. I discuss the characteristics of the infrared morphology of the SNRs interacting with molecular clouds and their dust heating processes. Finally, I give a brief summary of the detection of SN dust and crystalline silicate dust in SNRs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Allen, M. G., Groves, B. A., Dept, M. A., Sutherland, R. S., & Kewley, L. J. 2008, ApJS, 178, 20Google Scholar
Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., & Kelly, D. M. 2003, ApJ, 125, 1210Google Scholar
Andersen, M., Rho, J., Reach, W. T., Hewitt, J. W., & Bernard, J. P. 2011, ApJ, 742, 7CrossRefGoogle Scholar
Burton, M. & Spyromilio, J. 1993, Proceedings of the Astronomical Society of Australia, 10, 327Google Scholar
Chevalier, R. A. 1999, ApJ, 511, 798Google Scholar
Chevalier, R. A. 2005, ApJ, 619, 839Google Scholar
Chevalier, R. A. & Oishi, J. 2003, ApJL, 593, L23Google Scholar
Dwek, E., Arendt, R. G., Bouchet, P., et al. 2008, ApJ, 676, 1029Google Scholar
Dwek, E. & Cherchneff, I. 2011, ApJ, 727, 63Google Scholar
Froebrich, D., Davis, C. J., Ioannidis, G., et al. 2011, MNRAS, 413, 480Google Scholar
Gall, C., Hjorth, J., & Andersen, A. C. 2011, A&ARv, 19, 43Google Scholar
Graham, J. R., Wright, G. S., Hester, J. J., & Longmore, A. J. 1991, AJ, 101, 175Google Scholar
Greenhouse, M. A., Satyapal, S., Woodward, C. E., et al. 1997, ApJ, 476, 105Google Scholar
Henning, T. 2010, ARAA, 48, 21Google Scholar
Hollenbach, D. J., Chernoff, D. F., & McKee, C. F. 1989, Infrared Spectroscopy in Astronomy, 290, 245Google Scholar
Hollenbach, D. & McKee, C. F. 1979, ApJS, 41, 555CrossRefGoogle Scholar
Keohane, J. W., Reach, W. T., Rho, J., & Jarrett, T. H. 2007, ApJ, 654, 938Google Scholar
Koo, B.-C. 2012, Publication of Korean Astronomical Society, 27, 225CrossRefGoogle Scholar
Koo, B.-C. & Heiles, C. 1995, ApJ, 442, 679CrossRefGoogle Scholar
Koo, B.-C., McKee, C. F., Suh, K.-W., et al. 2011, ApJ, 732, 6CrossRefGoogle Scholar
Koo, B.-C., Moon, D.-S., Lee, H.-G., Lee, J.-J., & Matthews, K. 2007, ApJ, 657, 308Google Scholar
Lee, H.-G., Moon, D.-S., Koo, B.-C., et al. 2011, ApJ, 740, 31Google Scholar
Lee, H.-G., Moon, D.-S., Koo, B.-C., Lee, J.-J., & Matthews, K. 2009, ApJ, 691, 1042Google Scholar
Lopez, L. A., Ramirez-Ruiz, E., Castro, D., & Pearson, S. 2013, ApJ, 764, 50Google Scholar
Matsuura, M., Dwek, E., Meixner, M., et al. 2011, Science, 333, 1258CrossRefGoogle Scholar
McKee, C. F., Hollenbach, D. J., Seab, G. C., & Tielens, A. G. G. M. 1987, ApJ, 318, 674Google Scholar
Moon, D.-S., Koo, B.-C., Lee, H.-G., et al. 2009, ApJ, 703, L81Google Scholar
Morel, T., Doyon, R., & St-Louis, N. 2002, MNRAS, 329, 398Google Scholar
Mouri, H., Kawara, K., & Taniguchi, Y. 2000, ApJ, 528, 186Google Scholar
Nozawa, T., Kozasa, T., Tominaga, N., et al. 2010, ApJ, 713, 356Google Scholar
Nozawa, T., Maeda, K., Kozasa, T., et al. 2011, ApJ, 736, 45Google Scholar
Oliva, E., Moorwood, A. F. M., & Danziger, I. J. 1989, A&A, 214, 307Google Scholar
Oliva, E., Moorwood, A. F. M., & Danziger, I. J. 1990, A&A, 240, 453Google Scholar
Oliva, E., Moorwood, A. F. M., Drapatz, S., Lutz, D., & Sturm, E. 1999, A&A, 343, 943Google Scholar
Pradhan, A. K. & Nahar, S. N. 2011, Atomic Astrophysics and Spectroscopy Cambridge University Press: Cambridge and New YorkCrossRefGoogle Scholar
Reach, W. T., Rho, J., & Jarrett, T. H. 2005, ApJ, 618, 297Google Scholar
Rosenberg, M. J. F., van der Werf, P. P., & Israel, F. P. 2012, A&A, 540, A116Google Scholar
Seward, F. D., Harnden, F. R. Jr., Murdin, P., & Clark, D. H. 1983, ApJ, 267, 698Google Scholar
Truelove, J. K. & McKee, C. F. 1999, ApJS, 120, 299Google Scholar