Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T22:38:43.375Z Has data issue: false hasContentIssue false

Hydrodynamical simulations of a compact source scenario for G2

Published online by Cambridge University Press:  22 May 2014

A. Ballone
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany email: [email protected] Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
M. Schartmann
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany email: [email protected] Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
A. Burkert
Affiliation:
University Observatory Munich, Scheinerstraße 1, D-81679 München, Germany email: [email protected] Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany Max-Planck Fellow
S. Gillessen
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
R. Genzel
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
T. K. Fritz
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
F. Eisenhauer
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
O. Pfuhl
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
T. Ott
Affiliation:
Max-Planck-Institute for Extraterrestrial Physics, Postfach 1312, Giessenbachstraße, D-85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of the dense gas cloud “G2” discovered in the Galactic center (Gillessen et al. 2012) is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present here detailed simulations of the evolution of winds on G2's orbit. We find that the hydrodynamic interaction with the hot atmosphere present in the Galactic center and the extreme gravitational field of the supermassive black hole must be taken into account when modeling such a source scenario. We also find that in this scenario most of the Brγ luminosity is expected to come from the highly filamentary densest shocked wind material. G2's observational properties can be used to constrain the properties of the outflow and our best model has a mass outflow rate of w=8.8 × 10−8 M yr−1 and a wind velocity of vw = 50 km s−1. These values are compatible with those of a young TTauri star wind, as already suggested by Scoville & Burkert (2013).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alig, C., Schartmann, M., Burkert, A. & Dolag, K. 2013, ApJ 771, 119Google Scholar
Anninos, P., Fragile, P. C., Wilson, J. & Murray, S. D. 2012, ApJ 759, 132Google Scholar
Ballone, A., Schartmann, M., Burkert, A., Gillessen, S., Genzel, R.et al. 2013, ApJ 776, 13Google Scholar
Burkert, A., Schartmann, M., Alig, C., Gillessen, S., Genzel et al. 2012, ApJ 750, 58Google Scholar
Cuadra, J., Nayakshin, S., Springel, V. & Di Matteo, T. 2006, MNRAS 366, 358CrossRefGoogle Scholar
Eckart, A., Muzić, K., Yazici, S., Sabha, N., Shahzamanian et al. 2013, A&A 551, A18Google Scholar
Genzel, R., Schödel, R., Ott, T., Eisenhauer, F., Hofmann, R.et al. 2003, ApJ 594, 812Google Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R.et al. 2009, ApJ 692, 1075Google Scholar
Gillessen, S., Genzel, R., Fritz, T. K., Quataert, E., Alig, C.et al. 2012, Nature 481, 51Google Scholar
Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F., Pfuhl, O.et al. 2013a, ApJ 763, 78CrossRefGoogle Scholar
Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F., Pfuhl, O.et al. 2013b, ApJ 774, 44CrossRefGoogle Scholar
Meyer, F., & Meyer-Hofmeister, E. 2012, A&A 546, L2Google Scholar
Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P.et al. 2012, ApJS 198, 7Google Scholar
Miralda-Escudé, J. 2012, ApJ 756, 86Google Scholar
Murray-Clay, R. A., & Loeb, A. 2012, NatCo 3, 1049Google Scholar
Paumard, T., Genzel, R., Martins, F., Nayakshin, S., Beloborodov et al. 2006, ApJ 594, 812Google Scholar
Phifer, K., Do, T., Meyer, L., Ghez, A. M., Witzel et al. 2013, ApJL 773, L13Google Scholar
Schartmann, M., Burkert, A., Alig, C., Gillessen, S., Genzel, R.et al. 2012, ApJ 750, 58Google Scholar
Scoville, N., & Burkert, A. 2013, ApJ 768, 108Google Scholar
White, R. J., & Hillenbrand, L. A. 2004, ApJ 616, 998Google Scholar
Yuan, F., Quataert, E. & Narayan, R. 2003, ApJ 598, 301Google Scholar