Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:11:10.986Z Has data issue: false hasContentIssue false

Habitable Planets: Interior Dynamics and Long-Term Evolution

Published online by Cambridge University Press:  29 April 2014

Paul J. Tackley
Affiliation:
Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Sonneggstrasse 4, 8092 Zurich, Switzerland email: [email protected]
Michael M. Ammann
Affiliation:
Dept. Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
John P. Brodholt
Affiliation:
Dept. Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
David P. Dobson
Affiliation:
Dept. Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
Diana Valencia
Affiliation:
Dept. Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Ahrens, T. J. 1989, Nature, 342, 122CrossRefGoogle Scholar
Ammann, M. W., Brodholt, J. P., Wookey, J., & Dobson, D. P. 2010, Nature, 465, 462Google Scholar
Armann, M. & Tackley, P. J. 2012, J. Geophys. Res. 117 CiteID E12003Google Scholar
Bercovici, D., Schubert, G. (eds.) 2007, Treatise on Geophysics Volume 7: Mantle Dynamics (Oxford and San Diego: Elsevier), pp. 505Google Scholar
Crameri, F., Tackley, P. J., Meilick, I., Gerya, T. V., & Kaus, B. J. P. 2012, Geophys. Res. Lett., 39, L03306CrossRefGoogle Scholar
Crowley, J. W., Grault, M., & O'Connell, R. J. 2011, Earth Planet. Sci. Lett., 310 (34), 380Google Scholar
Davies, G. F. 1993, Geology, 21 (6), 5762.3.CO;2>CrossRefGoogle Scholar
Foley, B. J., Bercovici, D., & Landuyt, W. 2012, Earth Planet. Sci. Lett., 331–332 (0), 281CrossRefGoogle Scholar
Fowler, A. C. 1993, Studies In Applied Mathematics, 88, 113CrossRefGoogle Scholar
Franck, S., Kossacki, K. J., Von Bloh, W., & Bounama, C. 2002, Tellus Series B-Chemical & Physical Meteorology, 54 (4), 325Google Scholar
Keller, T. & Tackley, P. J. 2009, Icarus, 202 (2), 429Google Scholar
Kirby, S. H. 1980, Geophys. Res., 85, 6353CrossRefGoogle Scholar
Kite, E. S., Manga, M., & Gaidos, E. 2009, The Astrophysical Journal, 700 (2), 1732CrossRefGoogle Scholar
Kohlstedt, D. L., Evans, B., & Mackwell, S. J. 1995, J. Geophys. Res., 100, 17587Google Scholar
Korenaga, J. 2010, Astrophys. J. Lett. 725 L43L46Google Scholar
Kump, L. R. 2008, Nature, 451 (7176), 277CrossRefGoogle Scholar
Kump, L. R., Kasting, J. F., & Barley, M. E. 2001, Geochem. Geophys. Geosys., 2 (1), 1025CrossRefGoogle Scholar
Labrosse, S., Hernlund, J. W., & Coltice, N. 2007, Nature, 450, 866Google Scholar
Lenardic, A., Moresi, L. N., Jellinek, A. M., & Manga, M. 2005, Earth Planet. Sci. Lett., 234, 317CrossRefGoogle Scholar
McKenzie, D., Ford, P. G., Johnson, C., Parsons, B., Sandwell, D., Saunders, S., & Solomon, S. C. 1992, J. Geophys. Res., 97, 13533CrossRefGoogle Scholar
Moresi, L. & Solomatov, V. 1998, Geophys. J. Int., 133 (3), 669Google Scholar
Nakagawa, T., Tackley, P. J., Deschamps, F., & Connolly, J. A. D. 2009, Geophys. Geochem. Geosyst., 10, Q03004Google Scholar
Nakagawa, T. & Tackley, P. J. 2010, Geophys. Geochem. Geosyst., 11, Q06001CrossRefGoogle Scholar
Nakagawa, T. & Tackley, P. J. 2012, Earth Planet. Sci. Lett., 329–330, 1Google Scholar
O'Neill, C. & Lenardic, A. 2007, Geophys. Res. Lett., 34, L19204CrossRefGoogle Scholar
O'Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H., & Lee, C. T. A. 2007, Earth Planet. Sci. Lett., 262, 552CrossRefGoogle Scholar
Ogawa, M. & Yanagisawa, T. 2011, J. Geophys. Res., 116, E08008Google Scholar
Rolf, T. & Tackley, P. J. 2011, Geophys. Res. Lett., 38, L18301CrossRefGoogle Scholar
Sandwell, D. T. & Schubert, G. 1992, Science, 257 (5071), 766Google Scholar
Schubert, G., Turcotte, D. L., & Olson, P. 2000, Mantle Convection in the Earth and Planets (Cambridge: Cambridge University Press)Google Scholar
Shimada, M., 1993, Tectonophys., 217, 55CrossRefGoogle Scholar
Sleep, N. H. 1994, J. Geophys. Res., 99 (E3), 5639CrossRefGoogle Scholar
Sleep, N. H. 2000, J. Geophys. Res., 105 (E7), 17563Google Scholar
Sleep, N. H. & Zahnle, K. 2001, J. Geophys. Res., 106, 1373Google Scholar
Stamenkovic, V., Breuer, D., & Spohn, T. 2011, Icarus, 216, 572Google Scholar
Stamenkovic, V., Noack, L., Breuer, D., & Spohn, T. 2012, The Astrophysical Journal, 748, 41Google Scholar
Stevenson, D. J. 2007, Treatise on Geophysics Volume 9: Evolution of the Earth (Oxford and San Diego: Elsevier), 1Google Scholar
Tachinami, C., Senshu, H., & Ida, S. 2011, The Astrophysical Journal, 726 (2), 70Google Scholar
Tackley, P. J. 2000, Geochem., Geophys., Geosys, 1, 2000GC000036Google Scholar
Tackley, P. J. 2000, Science, 288, 2002CrossRefGoogle Scholar
Tackley, P. J. 2011, Earth Sci. Rev., 110, 1Google Scholar
Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D. P., & Valencia, D. 2013, Icarus 225 50Google Scholar
Turcotte, D. L. 1993), J. Geophys. Res., 98, 17061Google Scholar
Valencia, D. & O'Connell, R. J. 2009, Earth Planet. Sci. Lett., 286, 492Google Scholar
Valencia, D., O'Connell, R. J., & Sasselov, D. D. 2007, Astrophys. J., 670, L45CrossRefGoogle Scholar
van Heck, H. & Tackley, P. J. 2011, Earth Planet. Sci. Lett., 310, 252CrossRefGoogle Scholar
Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, J. Geophys. Res., 86 (C10), 9776Google Scholar