Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:21:27.309Z Has data issue: false hasContentIssue false

H2O MegaMasers: RadioAstron success story

Published online by Cambridge University Press:  16 July 2018

Willem Baan
Affiliation:
Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands, email: [email protected] XinJiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, PR China
Alexey Alakoz
Affiliation:
AstroSpace Center, Lebedev Physical Institute, Moscow, Russia, email: [email protected]
Tao An
Affiliation:
Shanghai Astrophysical Observatory, Chinese Academy of Sciences, Shanghai, PR China
Simon Ellingsen
Affiliation:
University of Tasmania, Hobart, Australia
Christian Henkel
Affiliation:
Max Planck Institut für Radioastronomie, Bonn, Germany Astron. Dept., King Abdulaziz Univ., Jeddah, Saudi Arabia
Hiroshi Imai
Affiliation:
Kagoshima University, Kagoshima, Japan
Vladimir Kostenko
Affiliation:
AstroSpace Center, Lebedev Physical Institute, Moscow, Russia, email: [email protected]
Ivan Litovchenko
Affiliation:
AstroSpace Center, Lebedev Physical Institute, Moscow, Russia, email: [email protected]
James Moran
Affiliation:
Center for Astrophysics, Cambridge MA, USA
Andrej Sobolev
Affiliation:
Ural Federal University, Ekaterinburg, Russia
Alexander Tolmachev
Affiliation:
AstroSpace Center, Lebedev Physical Institute, Moscow, Russia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The RadioAstron space-VLBI mission has successfully detected extragalactic H2O MegaMaser emission regions at very long Earth to space baselines ranging between 1.4 and 26.7 Earth Diameters (ED). The preliminary results for two galaxies, NGC 3079 and NGC 4258, at baselines longer than one ED indicate masering environments and excitation conditions in these galaxies that are distinctly different. Further observations of NGC 4258 at even longer baselines are expected to reveal more of the physics of individual emission regions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Baan, W. A. & Irwin, J. A., 1995, ApJ, 446, 602Google Scholar
Haschick, A. D., Baan, W. A., & Peng, E., 1994, ApJ, 437, L35Google Scholar
Hagiwara, Y., Klöckner, H.-R., & Baan, W. A., 2004, MNRAS, 353, 1055Google Scholar
Herrnstein, J. R., Greenhill, L. J., Moran, J. M., et al. 1998, ApJ, 497, L69Google Scholar
Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., et al., 2008, ApJ, 672, 800CrossRefGoogle Scholar
Kardashev, N. S., Khartov, V. V., Abramov, V. V., et al., 2013, Astronomy Reports, 57, 153Google Scholar
Kondratko, P. T., Greenhill, L. J., & Moran, J. M., 2005, ApJ, 618, 618Google Scholar
Likhachev, S. F., Kostenko, V. I., Girin, I. A., et al. 2017, J. Astron. Instrum., 6, 3, 1750004Google Scholar
Lipunov, V., Kornilov, V., Gorbovskoy, E., et al., 2010, Advances in Astronomy, 2010, 30LGoogle Scholar
Middelberg, E., Agudo, I., Roy, A. L., & Krichbaum, T. P., 2007, MNRAS, 377, 731Google Scholar