Published online by Cambridge University Press: 22 May 2014
I discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000 km s−1, with mass outflow rates between 0.5 and a few M⊙ yr−1. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100 km s−1 and mass flow rates from 0.1 to ∼1 M⊙ yr−1. These rates are 2–3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). In particular, one of these rings, with radius of ≈ 100 pc is observed in the Seyfert 2 galaxy NGC 1068, and is associated to an off-centered molecular ring, very similar to that observed in the Milky Way (MW). On the basis of an evolutionary scenario in which gas falling into the nuclear region triggers star formation followed by the triggering of nuclear activity, we speculate that, in the case of the MW, molecular gas has already accumulated within the inner ≈ 100 pc to trigger the formation of new stars, as supported by the presence of blue stars close to the galactic center. A possible increase in the star-formation rate in the nuclear region will then be followed, probably tens of millions of years later, by the triggering of nuclear activity in Sgr A*.