No CrossRef data available.
Published online by Cambridge University Press: 17 July 2013
The evolution of size and shape of massive quiescent galaxies over cosmic history has been challenging to explain within standard models of galaxy assembly. Several mechanisms have been proposed to explain the size growth of these systems, including major mergers, expansion, and late accretion via a series of minor mergers. The central mass density is shown to be an excellent tool for discriminating between different evolutionary scenarios. We present here the analysis performed on a spectroscopic sample of ~500 quiescent systems with stellar masses M*>1010 M⊙ spanning the redshift range 0.2<z<2.7 for which we calculate stellar mass densities within central 1 kpc and show that this quantity evolves linearly with redshift. Our results do not change when only systems at constant number density are considered in order to account for the mass growth during mergers and to relate progenitors to their descendants. Discrepancy between our findings and other recent studies performed on an order of magnitude smaller samples emphasizes the need for larger homogeneous spectroscopic samples to be used in such analysis.