Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T19:14:53.304Z Has data issue: false hasContentIssue false

Diagnosing particle acceleration in relativistic jets

Published online by Cambridge University Press:  24 March 2015

Markus Böttcher
Affiliation:
Centre for Space Research, North-West University Potchefstroom, 2520, South Africa email: [email protected]
Matthew G. Baring
Affiliation:
Department of Physics and Astronomy, Rice University MS 108, 6100 Main Street, Houston, TX 77005, USA
Edison P. Liang
Affiliation:
Department of Physics and Astronomy, Rice University MS 108, 6100 Main Street, Houston, TX 77005, USA
Errol J. Summerlin
Affiliation:
Heliospheric Physics Laboratory, Code 672 NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA
Wen Fu
Affiliation:
Department of Physics and Astronomy, Rice University MS 108, 6100 Main Street, Houston, TX 77005, USA
Ian A. Smith
Affiliation:
Department of Physics and Astronomy, Rice University MS 108, 6100 Main Street, Houston, TX 77005, USA
Parisa Roustazadeh
Affiliation:
Department of Physics and Astronomy, Rice University MS 108, 6100 Main Street, Houston, TX 77005, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ackermann, M., et al. 2012, ApJ, 751, 159Google Scholar
Baring, M. G., Böttcher, M., & Summerlin, E. J. 2014, Proc. of “High Energy Phenomena in Relativistic Outflows (HEPRO IV)”, Aharonian, F. A., et al. (Eds.), IJMP Conf Ser. 28, 1460167Google Scholar
Berezhko, E. G. 1981, JETPL, 33, 399Google Scholar
Böttcher, M., Mause, H., & Schlickeiser, R. 1997, A&A, 324, 395Google Scholar
Böttcher, M. & Chiang, J. 2002, ApJ, 581, 127Google Scholar
Böttcher, M., Reimer, A., Sweeney, K., & Prakash, A. 2013, ApJ, 768, 54Google Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability, New York: DoverGoogle Scholar
De Gouveia Dal Pino, E. M., Piovezan, P. P., & Kadowaki, L. H. S. 2010, A&A, 518, A5Google Scholar
Drury, L. O'C 1983, Rep. Prog. Phys., 46, 973Google Scholar
Giannios, D., Uzdensky, D. A., & Begelman, M. C. 2009, MNRAS, 395, L29Google Scholar
Giroletti, M., et al. 2004, ApJ, 600, 127Google Scholar
Jones, F. C. & Ellison, D. C. 1991, Space Sci. Rev., 58, 259Google Scholar
Liang, E. P., Böttcher, M., & Smith, I. A. 2013a, ApJ, 766, L19Google Scholar
Liang, E. P., Fu, W., Böttcher, M., Smith, I. A., & Roustazadeh, P. 2013b, ApJ, 779, L27Google Scholar
Lyutikov, M. & Lister, M. 2010, ApJ, 722, 197Google Scholar
Meliani, Z. & Keppens, R. 2007, A&A, 475, 785Google Scholar
Mizuno, Y., Hardee, P., & Nishikawa, K. I. 2007, ApJ, 662, 835CrossRefGoogle Scholar
Niemiec, J. & Ostrowski, M. 2004, ApJ, 610, 851Google Scholar
Rieger, F. & Duffy, P. 2006, ApJ, 652, 1044Google Scholar
Romanova, M. M. & Lovelace, R. V. E. 1992, A&A, 262, 26Google Scholar
Sikora, M., et al. 1997, ApJ, 484, 108Google Scholar
Sironi, L. & Spitkovsky, A. 2014, ApJ, 783, L21Google Scholar
Stawarz, L. & Ostrowski, M. 2002, ApJ, 578, 763Google Scholar
Summerlin, E. J. & Baring, M. G. 2012, ApJ, 745, 63Google Scholar