Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T15:36:47.378Z Has data issue: false hasContentIssue false

Cosmic distances from surface brightness fluctuations

Published online by Cambridge University Press:  26 February 2013

John P. Blakeslee*
Affiliation:
Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High spatial-resolution measurements of surface brightness fluctuations (SBFs) with the Hubble Space Telescope (HST) provide the most precise distances available to early-type galaxies beyond the Local Group. The observable SBF magnitude in a given bandpass is a basic property of any stellar system, corresponding to a ratio of the first and second moments of the stellar luminosity function. Calibration of the method has presented challenges, but we now have an excellent empirical determination of how the SBF observable varies with galaxy color in broad bandpasses at the red end of the optical spectrum, and we are working towards a similar calibration for HST's Wide-Field Camera 3 in the near-infrared wavelength range, where the SBF magnitudes are considerably brighter. From HST Advanced Camera for Surveys data, we have determined the relative distances of the Virgo and Fornax clusters to within a precision of 2%, and resolved their internal structures. More recent measurements allow us to tie the Coma cluster, the standard of comparison for distant cluster studies, to the same precise distance scale. The SBF method can be calibrated in an absolute sense either empirically using Cepheids or theoretically based on stellar population models. The agreement between model and empirical zero points provides an independent confirmation of the Cepheid distance scale.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ajhar, E. A., Lauer, T. R., Tonry, J. L., et al. 1997, AJ, 114, 626CrossRefGoogle Scholar
Ajhar, E. A., Tonry, J. L., Blakeslee, J. P., Riess, A. G., & Schmidt, B. P. 2001, ApJ, 559, 584Google Scholar
Bird, S., Harris, W. E., Blakeslee, J. P., & Flynn, C. 2010, A&A, 524, A71Google Scholar
Biscardi, I., Raimondo, G., Cantiello, M., & Brocato, E. 2008, ApJ, 678, 168CrossRefGoogle Scholar
Blakeslee, J. P. 2012, Ap&SS, 341, 179Google Scholar
Blakeslee, J. P., Cantiello, M., Mei, S., et al. 2010, ApJ, 724, 657Google Scholar
Blakeslee, J. P., Davis, M., Tonry, J. L., Dressler, A., & Ajhar, E. A. 1999, ApJ, 527, L73CrossRefGoogle Scholar
Blakeslee, J. P., Jordán, A., Mei, S., et al. 2009, ApJ, 694, 556CrossRefGoogle Scholar
Blakeslee, J. P., Vazdekis, A., & Ajhar, E. A. 2001, MNRAS, 320, 193Google Scholar
Cantiello, M., Blakeslee, J. P., Raimondo, G., et al. 2005, ApJ, 634, 239Google Scholar
Cantiello, M., Blakeslee, J. P., Raimondo, G., et al. 2007, ApJ, 668, 130CrossRefGoogle Scholar
Cantiello, M., Brocato, E., & Capaccioli, M. 2011, A&A, 534, A35Google Scholar
Côté, P., Blakeslee, J. P., Ferrarese, L., et al. 2004, ApJS, 153, 223Google Scholar
Dunn, L. P. & Jerjen, H. 2006, AJ, 132, 1384Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARA&A, 48, 673Google Scholar
Fritz, A. 2012, Publ. Astron. Soc. Aus., 29, 489Google Scholar
Jensen, J. B., Luppino, G. A., & Tonry, J. L. 1996, ApJ, 468, 519Google Scholar
Jensen, J. B., Tonry, J. L., & Luppino, G. A. 1998, ApJ, 505, 111Google Scholar
Jensen, J. B., Tonry, J. L., Barris, B. J., et al. 2003, ApJ, 583, 712Google Scholar
Jensen, J. B., Tonry, J. L., Thompson, R. I., et al. 2001, ApJ, 550, 503Google Scholar
Jerjen, H., Rekola, R., Takalo, L., Coleman, M., & Valtonen, M. 2001, A&A, 380, 90Google Scholar
Jha, S., Riess, A. G., & Kirshner, R. P. 2007, ApJ, 659, 122Google Scholar
Jordán, A., Blakeslee, J. P., Côté, P., et al. 2007, ApJS, 169, 213Google Scholar
Mei, S., Blakeslee, J. P., Tonry, J. L., et al. 2005a, ApJS, 156, 113CrossRefGoogle Scholar
Mei, S., Blakeslee, J. P., Tonry, J. L., et al. 2005b, ApJ, 625, 121Google Scholar
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144Google Scholar
Mieske, S. & Hilker, M. 2003, A&A, 410, 445Google Scholar
Mieske, S., Hilker, M., & Infante, L. 2006, A&A, 458, 1013Google Scholar
Raimondo, G. 2009, ApJ, 700, 1247CrossRefGoogle Scholar
Raimondo, G., Brocato, E., Cantiello, M., & Capaccioli, M. 2005, AJ, 130, 2625Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Tonry, J. L., Ajhar, E. A., & Luppino, G. A. 1990, AJ, 100, 1416CrossRefGoogle Scholar
Tonry, J. L., Blakeslee, J. P., Ajhar, E. A., & Dressler, A., 1997, ApJ, 475, 399CrossRefGoogle Scholar
Tonry, J. L., Blakeslee, J. P., Ajhar, E. A., & Dressler, A., 2000, ApJ, 530, 625Google Scholar
Tonry, J. L., Dressler, A., Blakeslee, J. P., et al. 2001, ApJ, 546, 681CrossRefGoogle Scholar
Tonry, J. L. & Schneider, D. P. 1988, AJ, 96, 807Google Scholar