Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T06:59:54.870Z Has data issue: false hasContentIssue false

Cold and Warm Gas Outflows in Radio AGN

Published online by Cambridge University Press:  03 June 2010

Raffaella Morganti
Affiliation:
Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands Email: [email protected] Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
Joanna Holt
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
Clive Tadhunter
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
Tom Oosterloo
Affiliation:
Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands Email: [email protected] Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of the conditions and the kinematics of the gas in the central region of AGN provides important information on the relevance of feedback effects connected to the nuclear activity. Quantifying these effects is key for constraining galaxy evolution models. Here we present a short summary of our recent efforts to study the occurrence and the impact of gas outflows in radio-loud AGN that are in their first phase of their evolution. Clear evidence for AGN-induced outflows has been found for the majority of these young radio sources. The outflows are detected both in (warm) ionized as well in (cold) atomic neutral gas, and they are likely to be driven (at least in most of the cases) by the interaction between the expanding jet and the medium. The mass outflow rates of the cold gas (Hi) appear to be systematically higher than those of the ionized gas. The former reach up to ~50 M yr−1 and are in the same range as “mild” starburst-driven superwinds in ULIRGs, whilst the latter are currently estimated to be a few solar masses per year. However, the kinetic powers associated with these gaseous outflows are a relatively small fraction (a few × 10−4) of the Eddington luminosity of the galaxy. Thus, they do not appear to match the requirements of the galaxy evolution feedback models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Axon, D. J., Capetti, A., Fanti, R., Morganti, R., Robinson, A., & Spencer, R. 2000, AJ, 120, 2284CrossRefGoogle Scholar
Batcheldor, D., et al. 2007, ApJ, 661, 70CrossRefGoogle Scholar
Bicknell, G., Dopita, M. A., & O'Dea, C. P. 1997, ApJ, 485, 112CrossRefGoogle Scholar
Booth, R. S., de Blok, W. J. G., Jonas, J. L., & Fanaroff, B. 2009, MeerKAT Key Project Science, Specifications, and Proposals [arXiv:0910.2935]Google Scholar
Clark, N. E., et al. 1997, MNRAS, 286, 558CrossRefGoogle Scholar
Croston, J. H., Kraft, R. P., & Hardcastle, M. J. 2007, ApJ, 660, 191CrossRefGoogle Scholar
Croston, J. H., et al. 2009, MNRAS, 395, 1999CrossRefGoogle Scholar
de Vries, W. H., O'Dea, C. P., Baum, S. A., & Barthel, P. D. 1999, ApJ, 526, 27CrossRefGoogle Scholar
de Vos, M., Gunst, A. W., & Nijboer, R. 2009, in Proceedings of the IEEE, Vol. 97, p. 1431CrossRefGoogle Scholar
Di Matteo, T., Springel, V., & Hernquist, T. 2005, Nature, 433, 604CrossRefGoogle Scholar
Emonts, B. H. C., et al. 2006, A&A, 454, 125Google Scholar
Fragile, P. C., Murray, S. D., Anninos, P., & van Breugel, W. 2004, ApJ, 604, 74CrossRefGoogle Scholar
Gelderman, R. & Whittle, M. 1994, ApJS, 91, 491CrossRefGoogle Scholar
Heinz, S., Reynolds, C. S., & Begelman, M. C. 1998, ApJ, 501, 126CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2003, MNRAS, 342, 227CrossRefGoogle Scholar
Holt, J., et al. 2006, MNRAS, 370, 1633CrossRefGoogle Scholar
Holt, J., et al. 2007, MNRAS, 381, 611CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2008, MNRAS, 387, 639CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2009, MNRAS, 400, 589CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Martini, P., Robertson, B., & Springel, V. 2005, ApJ, 630, 705CrossRefGoogle Scholar
Inskip, K. J., Villar-Martín, M., Tadhunter, C. N., Morganti, R., Holt, J., & Dicken, D. 2008, MNRAS, 386, 1797CrossRefGoogle Scholar
Jackson, N., Sparks, W. B., Miley, G. K., & Macchetto, F. 1995, A&A, 296, 339Google Scholar
Jetha, N. N., Hardcastle, M. J., Ponman, T. J., & Sakelliou, I. 2008, MNRAS, 391, 1052CrossRefGoogle Scholar
Johnston, S., et al. 2008, Experimental Astronomy, 22, 151CrossRefGoogle Scholar
Kraft, R. P., et al. 2003, ApJ, 592, 129CrossRefGoogle Scholar
Krause, M. & Gaibler, V. 2009, in The Interface between Galaxy Formation and AGN, ed. Antonuccio-Delogu, V. & Silk, J., in press [arXiv:0906.2122]Google Scholar
Lazio, J. 2009, in Panoramic Radio Astronomy, in press [arXiv:0910.0632]Google Scholar
Massaro, F., et al. 2009, ApJ, 692, L123CrossRefGoogle Scholar
McNamara, B. R. & Nulsen, P. E. J. 2007, ARAA, 45, 117CrossRefGoogle Scholar
Mellema, G., Kurk, J. D., & Rottgering, H. 2002, A&A 395, 13Google Scholar
Morganti, R., et al. 2003, ApJ, 593, 69CrossRefGoogle Scholar
Morganti, R., Greenhill, L. J., Peck, A. B., Jones, D. L., & Henkel, C. 2004, New Astron. Rev., 48, 1195CrossRefGoogle Scholar
Morganti, R., Tadhunter, C. N., & Oosterloo, T. 2005a, A&A, 444, L9Google Scholar
Morganti, R., Tadhunter, C. N., Oosterloo, T., van Moorsel, G., & Emonts, B. 2005b, A&A, 439, 521Google Scholar
Morganti, R., Holt, J., Saripalli, L., Oosterloo, T., & Tadhunter, C. 2007, A&A, 476, 735Google Scholar
Morganti, R., et al. 2009, in Panoramic Radio Astronomy: Wide-Field 1-2 GHz Research on Galaxy Evolution, ed. Heald, G. & Serra, P., in pressGoogle Scholar
Nesvadba, N. P. H., et al. 2006, ApJ, 650, 693CrossRefGoogle Scholar
Nesvadba, N. P. H. 2009, The Interface between Galaxy Formation and AGN, ed. Antonuccio-Delogu, V. and Silk, J., in press [arXiv:0906.2900]Google Scholar
O'Dea, C. P. 1998, PASP, 110, 493CrossRefGoogle Scholar
Oosterloo, T., et al. 2009, in Widefield Science and Technology for the SKA, in press [arXiv:0912.0093]Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2002, ApJ, 570, 588CrossRefGoogle Scholar
Saxton, C. J., Bicknell, G. V., Sutherland, R. S., & Midgley, S. 2005, MNRAS, 359, 781CrossRefGoogle Scholar
Solórzano-Iñarrea, C., Tadhunter, C., & Axon, D. 2001, MNRAS, 323, 965CrossRefGoogle Scholar
Sutherland, R. S. & Bicknell, G. V. 2007, ApJS, 173, 37CrossRefGoogle Scholar
Vermeulen, R. C., et al. 2003, A&A, 404, 861Google Scholar
Villar-Martín, M., Tadhunter, C., Morganti, R., Axon, D., & Koekemoer, A. 1999, MNRAS, 307, 24CrossRefGoogle Scholar
Villar-Martín, M., et al. 2001, MNRAS, 328, 848CrossRefGoogle Scholar