Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T18:30:28.628Z Has data issue: false hasContentIssue false

Can a planet explain different cavity sizes for small & large dust grains in transition disks?

Published online by Cambridge University Press:  06 January 2014

Antonio Garufi
Affiliation:
Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse27, Zurich, Switzerland email: [email protected]
Henning Avenhaus
Affiliation:
Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse27, Zurich, Switzerland email: [email protected]
Sascha P. Quanz
Affiliation:
Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse27, Zurich, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dissimilarities in the spatial distribution of small (μm–size) and large (mm–size) dust grains at the cavity edge of transition disks have been recently pointed out and are now under debate. We obtained VLT/NACO near-IR polarimetric observations of SAO 206462 (HD 135344B). The disk around the star shows very complex structures, such as dips and spirals. We also find an inner cavity much smaller than what is inferred from sub-mm images. The interaction between disk and orbiting companion(s) may explain this discrepancy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Alexander, R. D. & Armitage, P. J. 2007, MNRAS, 375, 500Google Scholar
Andrews, S. M., Wilner, D. J., Espaillat, C., et al. 2011, ApJ, 732, 42Google Scholar
Brown, J. M., Blake, G. A., Qi, C., et al. 2009, ApJ, 704, 496CrossRefGoogle Scholar
Dodson-Robinson, S. E. & Salyk, C. 2011, ApJ, 738, 131CrossRefGoogle Scholar
Dong, R., Rafikov, R., Zhu, Z., et al. 2012, ApJ, 750, 161Google Scholar
Dullemond, C. P. & Dominik, C. 2005, ASPCS, 434, 971Google Scholar
Fedele, D., van den Ancker, M. E., Acke, B., et al. 2008, A&A, 491, 809Google Scholar
Hashimoto, J., Dong, R., Kudo, T., et al. 2012, ApJL, 758, L19CrossRefGoogle Scholar
Lenzen, R., Hartung, M., Brandner, W., et al. 2003, SPIE, 4841, 944Google Scholar
Muto, T., Grady, C. A., Hashimoto, J., et al. 2012, ApJL, 748, L22Google Scholar
Pinilla, P., Benisty, M., & Birnstiel, T. 2012, A&A, 545, A81Google Scholar
Quanz, S. P., Schmid, H. M., Geissler, K., et al. 2011, ApJ, 738, 23Google Scholar
Rice, W. K. M., Armitage, P. J., Bonnell, I. A., et al. 2003, MNRAS, 346, L36Google Scholar
Rousset, G., Lacombe, F., Puget, P., et al. 2003, SPIE, 4839, 140Google Scholar
Sitko, M. L., Day, A. N., Kimes, R. L., et al. 2012, ApJ, 745, 29Google Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451CrossRefGoogle Scholar