Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T12:55:25.416Z Has data issue: false hasContentIssue false

C2 and Diffuse Interstellar Bands

Published online by Cambridge University Press:  21 February 2014

M. Kaźmierczak
Affiliation:
SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands, email: [email protected]
M. Schmidt
Affiliation:
Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland
T. Weselak
Affiliation:
Nicolaus Copernicus Astronomical Centre, ul. Rabiańska 8, 87-100 Toruń, Poland
G. Galazutdinov
Affiliation:
Institute of Physics, Kazimierz Wielki University, Weyssenhoffa 11,85-072 Bydgoszcz, Poland
J. Krełowski
Affiliation:
Universidad Catolica del Norte, Av. Angamos 0610, Antofagasta, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

C2, the simplest multicarbon molecule is a useful astronomical tool, because the analysis of its lines allows to determine the physical conditions in interstellar clouds. C2 abundances give information about the chemistry of interstellar clouds, especially on the pathway to the formation of long-chain carbon molecules, which may be connected with carriers of diffuse interstellar bands (Douglas 1977, Thorburn et al. 2003). Here we summarize all relations between C2 and diffuse interstellar bands (DIBs).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Douglas, A. E. 1977 Nature, 269, 130Google Scholar
Heger, M. L. 1922 LicOB, 10, 148Google Scholar
Herbig, G. H. 1975 ApJ, 196, 129Google Scholar
Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., et al. 2009 ApJ, 705, 32Google Scholar
Kaźmierczak, M., Gnaciński, P., Schmidt, M. R., Galazutdinov, G., et al. 2009, A&A, 498, 785Google Scholar
Kaźmierczak, M., Schmidt, M. R., Galazutdinov, , Musaev, F. A., et al. 2010, MNRAS, 408, 1590Google Scholar
Krełowski, J., & Walker, G. A. H. 1987 ApJ, 312, 860Google Scholar
Krełowski, J., Ehrenfreund, P., Foing, B. H., Snow, T. P., Weselak, T., et al. 1999 A&A 347, 235Google Scholar
Krełowski, J., Beletsky, Y. & Galazutdinov, G. A. 2010 ApJL, 719, 20CrossRefGoogle Scholar
Sarre, P. J., Miles, J. R., Kerr, T. H., Hibbins, R. E., Fossey, S. J., et al. 1995 MNRAS, 277, 41Google Scholar
Słyk, K., Bondar, A., Galazutdinov, G., & Krełowski, J. 2008 MNRAS, 390, 1733Google Scholar
Thorburn, J. A., Hobbs, L. M., McCall, B. J., Oka, T., Welty, D. E., et al. 2003 ApJ, 584, 339Google Scholar
Weselak, T., Galazutdinov, G. A., Musaev, F. A., & Krełowski, J. 2008 A&A, 484, 381Google Scholar
Weselak, T., Galazutdinov, G., Musaev, F., Beletsky, Y. & Krełowski, J. 2009 A&A, 495, 189Google Scholar
Weselak, T., Galazutdinov, G., Beletsky, Y., & Krełowski, J. 2009 A&A, 499, 783Google Scholar
Weselak, T., Galazutdinov, G., Beletsky, Y., & Krełowski, J. 2009 MNRAS, 400, 392Google Scholar
Weselak, T., Galazutdinov, G., Beletsky, Y., & Krełowski, J. 2010 MNRAS, 402, 1991Google Scholar