Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:38:47.226Z Has data issue: false hasContentIssue false

A Brief History of Regularisation

Published online by Cambridge University Press:  01 September 2007

S. Mikkola*
Affiliation:
Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö, Finland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The various methods for regularisation of the gravitational few-body problem, from the coordinate transformation by the Kustaanheimo-Stiefel method to the more recent methods of algorithmic regularisation, are reviewed. Numerical comparisons of the performance of the methods are presented and future research suggested.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. J. 1972, in Gravitational N-body Problem, proceedings of IAU colloquium No. 10, ed. Lecar, M., Reidel, Dordrecht, pp. 373–387.Google Scholar
Aarseth, S. J. 2003, Gravitational N-Body Simulations, Cambridge Univ. Press, CambridgeGoogle Scholar
Aarseth, S. J. & Zare, K. 1974, Celestial Mechanics, 10, 185Google Scholar
Bulirsch, R. & Stoer, J. 1966, Numerical Mathematics, 8, 1Google Scholar
Heggie, D. C. 1974, Celestial Mechanics, 10, 217CrossRefGoogle Scholar
Kustaanheimo, P. & Stiefel, E. 1965, J. Reine Angew. Math., 218, 204Google Scholar
Levi-Civita, T. 1920, Acta Mathematica, 42, 99CrossRefGoogle Scholar
Mikkola, S. 1985, MNRAS, 215, 171Google Scholar
Mikkola, S. & Aarseth, S. J. 1990, Celestial Mechanics and Dynamical Astronomy, 47, 375Google Scholar
Mikkola, S. & Aarseth, S. J. 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439CrossRefGoogle Scholar
Mikkola, S. & Aarseth, S. 2002, Celestial Mechanics and Dynamical Astronomy, 84, 343CrossRefGoogle Scholar
Mikkola, S. & Merritt, D. 2006, MNRAS, 372, 219Google Scholar
Mikkola, S. & Tanikawa, K. 1999a, Celestial Mechanics and Dynamical Astronomy, 74, 287Google Scholar
Mikkola, S. & Tanikawa, K. 1999b, MNRAS, 310, 745CrossRefGoogle Scholar
Preto, M. & Tremaine, S. 1999, AJ, 118, 2532CrossRefGoogle Scholar
Siegel. C. L. 1956, Vorlesungen über Himmelsmechanik, Springer, Berlin-Göttingen-Heidelberg.Google Scholar
Stiefel, E. L. & Scheifele, G. 1971, Linear and Regular Celestial Mechanics, Springer, Berlin.CrossRefGoogle Scholar
Szebehely, V. & Peters, C. F. 1967, AJ, 72, 876.Google Scholar
von Hoerner, S. 1960, Z. Astrophys., 50, 184Google Scholar
von Hoerner, S. 1963, Z. Astrophys., 57, 47Google Scholar
Zare, K. 1974, Celestial Mechanics, 10, 207Google Scholar