Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T22:38:54.627Z Has data issue: false hasContentIssue false

The barred inner Milky Way: dynamical models from surveys

Published online by Cambridge University Press:  02 August 2018

Ortwin Gerhard*
Affiliation:
Max-Planck-Institute for Ex. Physics, Giessenbachstr. 1, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Milky Way is a barred galaxy whose central bulge has a box/peanut shape and consists of multiple stellar populations with different orbit distributions. This review describes dynamical and chemo-dynamical equilibrium models for the Bulge, Bar, and inner Disk based on recent survey data. Some of the highlighted results include (i) stellar mass determinations for the different Galactic components, (ii) the need for a core in the dark matter distribution, (iii) a revised pattern speed putting corotation at ~6 kpc, (iv) the strongly barred distribution of the metal-rich stars, and (v) the radially varying dynamics of the metal-poor stars which is that of a thick disk-bar outside ~1 kpc, but changes into an inner centrally concentrated component with several possible origins. On-going and future surveys will refine this picture, making the Milky Way a unique case for studying how similar galaxies form and evolve.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abbott, C., Valluri, M., Shen, J., & Debattista, V. P., 2017, MNRAS, 470, 1526Google Scholar
Antoja, T., Helmi, A., Dehnen, W., et al. 2014, A&A, 563, A60Google Scholar
Athanassoula, E., 2016, ASSL, 418, 391Google Scholar
Babusiaux, C., Gómez, A., Hill, V., et al. 2010, A&A, 519, 77Google Scholar
Bland-Hawthorn, J. & Gerhard, O. 2016, AR&A, 54, 529 (BHG16)Google Scholar
Debattista, V., Ness, M., Gonzalez, O. A., et al. 2017. MNRAS, 469, 1587Google Scholar
Dehnen, W., 2000, AJ, 119, 800Google Scholar
De Lorenzi, F., Debattista, V. P., Gerhard, O., & Sambhus, N., 2007, MNRAS, 376, 71Google Scholar
De Lorenzi, F., Gerhard, O., Saglia, R. P., et al. 2008, MNRAS, 385, 1729Google Scholar
Di Matteo, P., Haywood, M., Gómez, A., et al. 2014, A&A, 567, A122Google Scholar
Erwin, P. & Debattista, V. P., 2013, MNRAS, 431, 3060Google Scholar
Erwin, P. & Debattista, V. P., 2016, ApJ, 825, L30Google Scholar
Fragkoudi, F., Di Matteo, P., Haywood, M., et al. 2017, eprint arXiv:1704.00734Google Scholar
Freeman, K. C., Wylie-de-Boer, E., Athanassoula, E., et al. 2013. MNRAS, 428, 3660Google Scholar
Gardner, E., Debattista, V. P., Robin, A. C., Vasquez, S., & Zoccali, M. 2014. MNRAS, 438, 3275Google Scholar
Gran, F., Minniti, D., Saito, R. K., et al. 2016, A&A, 591, 145Google Scholar
Kunder, A., Koch, A., Rich, R. M., et al. 2012, AJ, 143, 57Google Scholar
Kunder, A., Rich, R. M., Koch, A., et al. 2016, ApJ, 821, L25Google Scholar
Laurikainen, E., Salo, H., Athanassoula, E., Bosma, A., & Herrera-Endoqui, M., 2014, MNRAS, 444, L80Google Scholar
Martinez-Valpuesta, I. & Gerhard, O., 2011, ApJ, 734, L20Google Scholar
Martinez-Valpuesta, I. & Gerhard, O., 2013, ApJ, 766, L3Google Scholar
McWilliam, A. & Zoccali, M., 2010, ApJ, 724, 1491Google Scholar
Molaeinezhad, A., Falcón-Barroso, J., Martínez-Valpuesta, I., et al. 2016, MNRAS, 456, 692Google Scholar
Nataf, D. M., Udalski, A., Gould, A., Fouqué, P., & Stanek, K., 2010, ApJ, 721, L28Google Scholar
Ness, M., Freeman, K., Athanassoula, E., et al. 2013a, MNRAS, 430, 836Google Scholar
Ness, M, Freeman, K., Athanassoula, E., et al. 2013b, MNRAS, 432, 2092Google Scholar
Ness, M., Zasowski, G., Johnson, J. A., et al. 2016, ApJ, 819, 2Google Scholar
Pérez-Villegas, A., Portail, M., Wegg, C., & Gerhard, O., 2017, ApJ, 840, L2Google Scholar
Pietrukowicz, P., Kozlowski, S., Skowron, J., et al. 2015, ApJ, 811, 113Google Scholar
Piffl, T, Binney, J., McMillan, P.J., et al. 2014, MNRAS, 445, 3133Google Scholar
Portail, M., Wegg, C., Gerhard, O., & Martinez-Valpuesta, I., 2015, MNRAS, 448, 713Google Scholar
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017a, MNRAS, 465, 1621 (P17a)Google Scholar
Portail, M., Wegg, C., Gerhard, O., & Ness, M. 2017b, MNRAS, 470, 1233 (P17b)Google Scholar
Rich, R. M. 2013, in Oswalt, T.D., Gilmore, G. (eds.), Planets, Stars and Stellar Systems (Springer:Dordrecht) 5, 271Google Scholar
Rojas-Arriagada, A., Recio-Blanco, A., de Laverny, P., et al. 2017, A&A, 601, A140Google Scholar
Salaris, M. & Girardi, L. 2002, MNRAS, 337, 332Google Scholar
Shen, J., Rich, R. M., Kormendy, J., et al. 2010, ApJ, 720, L72Google Scholar
Sormani, M. C., Binney, J., & Magorrian, J., 2015, MNRAS, 454, 1818Google Scholar
Soto, M., Rich, R. M., & Kuijken, K. 2007, ApJ, 665, L31Google Scholar
Valenti, E., Zoccali, M., Gonzalez, O. A., et al. 2016, A&A, 587, L6Google Scholar
Wegg, C. & Gerhard, O. 2013, MNRAS, 435, 1874Google Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050Google Scholar
Wegg, C., Gerhard, O., & Portail, M., 2017, ApJ, 843, L5Google Scholar
Zoccali, M., Gonzalez, O. A., Vasquez, S., et al. 2014, A&A, 562, A66Google Scholar
Zoccali, M., Vasquez, S., Gonzalez, O. A., et al. 2017, A&A, 599, 12Google Scholar