Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T12:25:29.065Z Has data issue: false hasContentIssue false

Chemical reasonableness in Rietveld analysis; organics

Published online by Cambridge University Press:  01 March 2012

James A. Kaduk
Affiliation:
INEOS Technologies, P.O. Box 3011, MC F-9, Naperville, Illinois 60566-7011

Abstract

We know a lot about normal values of bond distances, bond angles, torsion angles, and other molecular parameters. This knowledge can be incorporated into the structure solution process and into Rietveld refinement through the use of restraints and rigid bodies. An important measure of the quality of the refined model is the chemical reasonableness of molecular geometry. Refinement of the structures of calcium tartrate tetrahydrate and guaifenesin is used to illustrate the importance of chemical reasonableness in determining the quality of a Rietveld refinement.

Type
Crystallography Education
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768102003890 58, 380388.CrossRefGoogle ScholarPubMed
Ambady, G. K. (1968). “The crystal and molecular structures of strontium tartrate trihydrate and calcium tartrate tetrahydrate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 24, 15481557; CSD Refcode CATART.CrossRefGoogle Scholar
Boese, R. and Heinemann, O. (1993). “Crystal structure of calcium tartrate tetrahydrate, C4H4O6Ca(H2O)4,” Z. Kristallogr.ZEKRDZ 205, 348349; CSD Refcode CATART02.CrossRefGoogle Scholar
Brown, I. D. (1996). “VALENCE: a program for calculating bond valences,” J. Appl. Crystallogr.JACGAR10.1107/S002188989600163X 29, 479480.CrossRefGoogle Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, International Union of Crystallography Monographs on Crystallography, 12 (Oxford U. P., New York).Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci.JCISD8 44, 21332144.CrossRefGoogle ScholarPubMed
Hawthorne, F. C., Borys, I., and Ferguson, R. B. (1982). “Structure of calcium tartrate tetrahydrate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 38, 24612463; CSD Refcode CATART01.CrossRefGoogle Scholar
Hellenbrandt, M. (2004). “The Inorganic Crystal Structure Database (ICSD)—present and future,” Crystallogr. Rev.CRRVEN 10, 1722.CrossRefGoogle Scholar
Helliwell, J. R., Strickland, P. R., and McMahon, B. (2006). “The role of quality in providing seamless access to information and data in e-science; the experience gained in crystallography,” Inf. Services Use 26, 4555.CrossRefGoogle Scholar
ICDD (2007). “Powder Diffraction File,” International Centre for Diffraction Data, edited by Frank McClune, 12 Campus Boulevard, Newtown Square, PA, 19073-3272.Google Scholar
Kaduk, J. A. (1998). “Chemical accuracy and precision in structure refinement from powder data,” Adv. X-Ray Anal.AXRAAA 40, 352370.Google Scholar
Kaduk, J. A. (2004). “Crystal structure of guaifenesin, 3-(2-methoxyphenoxy)-1,2-propanediol,” Powder Diffr.PODIE210.1154/1.1725274 19, 127132.CrossRefGoogle Scholar
Kaduk, J. A. and Partenheimer, W. (1997). “Chemical accuracy and precision in Rietveld analysis: The crystal structure of cobalt acetate tetrahydrate,” Powder Diffr.PODIE2 12, 2739.CrossRefGoogle Scholar
Kaduk, J. A., Golab, J. T., and Leusen, F. J. J. (1999). “The crystal structure of trimellitic anhydride and two of its solvates,” Cryst. Eng.CRYEF8 1(3/4), 277290.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2000). “General Structure Analysis System (GSAS),” Report No. LAUR 86-748, Los Alamos National Laboratory.Google Scholar
McCusker, L. B., VonDreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898009856 32, 3650.CrossRefGoogle Scholar
Needham, F. and Faber, J. (2003). “Total pattern analysis using the new organic powder diffraction file: PDF-4/organics,” Am. Pharm. Rev. 6(4), 1012.Google Scholar
Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., and Payne, M. C. (2002). “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys.: Condens. MatterJCOMEL10.1088/0953-8984/14/11/301 14, 27172743.Google Scholar
Shannon, R. D. and Prewitt, C. T. (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740869003220 25, 925946.CrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr.JACGAR10.1107/S0021889802022112 36, 713.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801002242 34, 210213.CrossRefGoogle Scholar
Toby, B. H. (2006). “R factors in Rietveld analysis: How good is good enough?” Powder Diffr.PODIE2 21, 6770.CrossRefGoogle Scholar
Toby, B. H. (2007). “Graphical appraisal of the quality of a Rietveld refinement,” in preparation.Google Scholar
Villars, P., Onodera, N., and Iwata, S. (1998). “The Linus Pauling File (LPF) and its application to materials design,” J. Alloys Compd.JALCEU 279, 17.CrossRefGoogle Scholar
White, P. S., Rodgers, J. R., and Le Page, Y. (2002). “CRYSTMET: a database of the structures and powder patterns of metals and intermetallics,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768102002902 58, 343348.CrossRefGoogle ScholarPubMed