Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:46:10.907Z Has data issue: false hasContentIssue false

Testing the flow-through capillary for the study of re-solvation processes in pharmaceutical compounds

Published online by Cambridge University Press:  23 June 2020

Jan Rohlíček*
Affiliation:
Department of Structure Analysis, Institute of Physics ASCR, Prague, Czech Republic
Vít Zvoníček
Affiliation:
Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
Eliška Skořepová
Affiliation:
Department of Structure Analysis, Institute of Physics ASCR, Prague, Czech Republic Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
Miroslav Šoóš
Affiliation:
Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

This paper describes a new flow-through capillary sample holder that allows the in situ study of re-solvation processes. The holder can be aligned to the goniometer's center using two perpendicular micrometric tables that move in y and z directions. The re-solvation of two ibrutinib solvates of anisole and fluorobenzene was tested using the holder to show the practical application of this technique.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., et al. (2012). “Polymorphs, salts, and cocrystals: what's in a name?,” Cryst. Growth Des. 12(5), 21472152.CrossRefGoogle Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., and Watkin, D. J. (2003). “CRYSTALS version 12: software for guided crystal structure analysis,” J. Appl. Crystallogr. 36(6), 1487.CrossRefGoogle Scholar
Byrn, S. R., Zogradi, G., and Chen, X. (2017). “Solvates and hydrates,” in Solid State Properties of Pharmaceutical Materials (John Wiley & Sons, Inc, Hoboken), pp. 3847. Available at: http://doi.wiley.com/10.1002/9781119264408.ch3 (March 18, 2020).CrossRefGoogle Scholar
Caira, M. R., Bettinetti, G., Sorrenti, M., and Catenacci, L. (2007). “Pharmaceutics, preformulation anddrug delivery,” J. Pharm. Sci. 96(5), 9961007.CrossRefGoogle Scholar
Hansen, B. R. S., Møller, K. T., Paskevicius, M., Dippel, A.-C., Walter, P., Webb, C. J., Pistidda, C., Bergemann, N., Dornheim, M., Klassen, T., Jørgensen, J.-E., and Jensen, T. R. (2015). “In situ X-ray diffraction environments for high-pressure reactions,” J. Appl. Crystallogr. 48(4), 12341241.CrossRefGoogle Scholar
Jensen, T. R., Nielsen, T. K., Filinchuk, Y., Jørgensen, J.-E., Cerenius, Y., Gray, E. M., and Webb, C. J. (2010). “Versatile in situ powder X-ray diffraction cells for solid–gas investigations,” J. Appl. Crystallogr. 43(6), 14561463.CrossRefGoogle ScholarPubMed
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41(2), 466470.CrossRefGoogle Scholar
Minkov, V. S., Beloborodova, A. A., Drebushchak, V. A., and Boldyreva, E. V. (2014). “Furosemide solvates: can they serve as precursors to different polymorphs of furosemide?,” Cryst. Growth Des. 14(2), 513522.CrossRefGoogle Scholar
Petříček, V., Dušek, M., and Palatinus, L. (2014). “Crystallographic computing system JANA2006: general features,” Z. Kristallogr. – Cryst. Mater. 229(5), 345352.CrossRefGoogle Scholar
Pfeiffer, R. R., Yang, K. S., and Tucker, M. A. (1970). “Crystal pseudopolymorphism of cephaloglycin and cephalexin,” J. Pharm. Sci. 59(12), 18091814.CrossRefGoogle ScholarPubMed
Rohlíček, J., Skořepová, E., Babor, M., and Čejka, J. (2016). “CrystalCMP: an easy-to-use tool for fast comparison of molecular packing,” J. Appl. Crystallogr. 49(6), 21722183.CrossRefGoogle Scholar
Scarlett, N. V. Y., Hewish, D., Pattel, R., and Webster, N. A. S. (2017). “A flow cell for the study of gas-solid reactions via in situ powder X-ray diffraction,” Rev. Sci. Instrum. 88(10), 105104.CrossRefGoogle Scholar
Sládková, V., Skalická, T., Skořepová, E., Čejka, J., Eigner, V., and Kratochvíl, B. (2015). “Systematic solvate screening of trospium chloride: discovering hydrates of a long-established pharmaceutical,” CrystEngComm 17(25), 47124721.CrossRefGoogle Scholar
Stephenson, G. A., Stowell, O. G., Toma, P. H., Pfeiffer, R. R., and Byrn, S. R. (1997). “Solid-state investigations of erythromycin A dihydrate: structure, NMR spectroscopy, and hygroscopicity,” J. Pharm. Sci. 86(11), 12391244.CrossRefGoogle ScholarPubMed
Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T., and Satow, Y. (1991). “Humidity-controlled reversible structure transition of disodium adenosine 5′-triphosphate between dihydrate and trihydrate in a single crystal state,” J. Am. Chem. Soc. 113(14), 54405445.CrossRefGoogle Scholar
Suitchmezian, V., Jeß, I., and Näther, C. (2006). “Investigations on the polymorphism and pseudopolymorphism of triamcinolone diacetate,” Int. J. Pharm. 323(1–2), 101109.CrossRefGoogle ScholarPubMed
Surov, O. V., Voronova, M. I., Smirnov, P. R., Mamardashvili, N. Z., and Shaposhnikov, G. P. (2012). “Polymorphism of 4-tert-butylcalix[4]Arene upon formation of n-hexane and acetonitrile complexes and thermal desolvation,” CrystEngComm 14(2), 533536.CrossRefGoogle Scholar
Tieger, E., Kiss, V., Pokol, G., Finta, Z., Rohlicek, J., Skorepova, E., and Dusek, M. (2016). “Rationalization of the formation and stability of bosutinib solvated forms,” CrystEngComm 18(48), 92609274.CrossRefGoogle Scholar
Zvonicek, V., Skořepová, E., Dušek, M., Babor, M., Žvátora, P., and Šoóš, M. (2017). “First crystal structures of pharmaceutical ibrutinib: systematic solvate screening and characterization,” Cryst. Growth Des. 17(6), 31163127.CrossRefGoogle Scholar
Zvonicek, V., Skorepova, E., Dusek, M., Zvatora, P., and Soos, M. (2018). “Ibrutinib polymorphs: crystallographic study,” Cryst Growth Des. 18(3), 13151326.CrossRefGoogle Scholar