Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T15:42:18.309Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of 5-acryloyloxy-trans-2-(4-methoxyphenyl)-3-methyl-2,3-dihydrobenzo[b]furan

Published online by Cambridge University Press:  17 August 2012

Mónica V. Sandoval
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Arnold R. Romero Bohórquez
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas, (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Vladimir V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas, (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The compound O-acryloylated 2,3-dihydrobenzo[b]furan-5-ol (2) described in the title (chemical formula C19H18O4) was synthesized through the acryloylation reaction in anhydrous dichloromethane from the corresponding trans-2-(4-methoxyphenyl)-3-methyl-2,3-dihydrobenzo[b]furan-5-ol derivative (1), an adduct easily obtained using the Lewis acid-promoted formal [3 + 2] cycloaddition reaction. Molecular characterization was performed by Fourier Transform-Infrared (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS), 1H and 13C NMR and crystallographic characterization was carried out by X-ray diffraction (XRD) of polycrystalline samples. The title compound crystallized in a monoclinic system and unit-cell parameters are reported [a = 8.067(2) Å, b = 8.803(2) Å, c = 22.405(5) Å, β = 91.62(3)°, unit-cell volume V = 1590.7(6) Å3 and Z = 4]. All measured lines were indexed with the P21/c (No. 14) space group.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apers, S., Vlietinck, A., and Pieters, L. (2003). “Lignans and neolignans as lead compounds,” Phytochem. Rev. 2, 201217.CrossRefGoogle Scholar
Benavides, P. J. C., Sartorelli, P., and Kato, M. J. (1999). “Phenylpropanoids and neolignans from Piper regnellii,” Phytochemistry 52, 339343.CrossRefGoogle Scholar
Bertolini, F. and Pineschi, M. (2009). “Recent progress in the synthesis of 2,3-dihydrobenzofurans,” Org. Prep. Proced. Int. 41, 385418.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Chen, C.-H., Shaw, C.-Y., Chen, C.-C., and Tsai, Y.-C. (2002). “2,3,4-Trimethyl-5,7-dihydroxy-2,3-benzofuran, a novel antioxidant, from Penicillium citrinum F5,” J. Nat. Prod. 65, 740741.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for poder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838838.CrossRefGoogle Scholar
Engler, T. and Lyenyar, R. (1998). “Lewis acid-directed reactions of quinones with styrenyl systems: the case of 2-methoxy-3-methyl-1,4-benzoquinone,” J. Org. Chem. 63, 19291934.CrossRefGoogle Scholar
Engler, T., Meduna, S., LaTessa, K., and Chai, W. (1996). “Lewis acid-promoted reactions of styrenyl systems with benzoquinone bisimines: new regioselective syntheses of substituted 2-aryl-2,3-dihydroindoles and 2-arylindoles,” J. Org. Chem. 61, 85988603.CrossRefGoogle Scholar
Engler, T. A., Wei, D., Letavic, M. A., Combrink, K. D., and Reddy, J. P. (1994). “Regioselective lewis acid-directed reactions of 2-alkoxy-5-alkyl-1,4-benzoquinones with styrenes: synthesis of burchellin and guianin neolignans,” J. Org. Chem. 59, 65886599.CrossRefGoogle Scholar
Kossakowski, J., Ostrowska, K., Struga, M., and Stefanska, J. (2009). “Synthesis of new derivatives of 2,2-dimethyl-2,3-dihydro-7-benzo[b]furanol with potential antimicrobial activity,” Med. Chem. Res. 18, 555565.CrossRefGoogle Scholar
Kouznetsov, V. V., Merchan, A. D., and Romero, B. A. R. (2008). “PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole,” Tetrahedron Lett. 49, 30973100.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Mighell, A. D., HubberdC, R. C, R., and Stalick, J. K. (1981). “NBS* AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Technical Note 1141.CrossRefGoogle Scholar
Ohara, H., Kiyokane, H., and Itoh, T. (2002). “Cycloaddition of styrene derivatives with quinone catalyzed by ferric ion; remarkable acceleration in an ionic liquid solvent system,” Tetrahedron Lett. 43, 30413044.CrossRefGoogle Scholar
Ohara, H., Kawai, K., Hayase, S., and Itoh, T. (2003). “Synthesis of optically active 2,3-dihydrobenzofuran derivatives through a combination strategy of iron(III)-catalyzed reaction and enzymatic reaction,” Tetrahedron Lett. 44, 40814084.Google Scholar
Rachinger, W. A. (1948). “A correction for the α 1α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.Google Scholar
Rakotondramanana, D. L. A., Delomenède, M., Baltas, M., Duran, H., Bedos-Belval, F., Rasoanaivo, P., Negre-Salvayre, A., and Gornitzka, H. (2007). “Synthesis of ferulic ester dimers, functionalisation and biological evaluation as potential antiatherogenic and antiplasmodial agents,” Bioorg. Med. Chem. 15, 60186026.CrossRefGoogle ScholarPubMed
Savitzky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Tsai, I.-L., Hsieh, C.-F., and Duh, C.-Y. (1998). “Additional citotoxic neolignans from Persea Obovatifolia,” Phytochemistry 48, 13711375.CrossRefGoogle Scholar
Van Miert, S., Van Dyck, S., Schmidt, T. J., Brun, R., Vlietinck, A., Lemière, G., and Pieters, L. (2005). “Antileishmanial activity, cytotoxicity and QSAR analysis of synthetic dihydrobenzofuran lignans and related benzofurans,” Bioorg. Med. Chem. 13, 661669.CrossRefGoogle ScholarPubMed
Wu, S. F., Chang, F. R., Wang, S. Y., Hwang, T. L., Lee, C. L., Chen, S. L., Wu, C. C., and Wu, Y. C. (2011). “Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus,” J. Nat. Prod. 74, 989996.CrossRefGoogle ScholarPubMed
Yadav, J. S., Reddy, B. V. S., and Kondaji, G. (2003). “InCl3-catalyzed [3 + 2] cycloaddition reactions: a facile synthesis of trans-dihydrobenzofurans and substituted cyclobutane derivatives,” Synthesis. 34, 11001104.CrossRefGoogle Scholar