Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T12:25:05.816Z Has data issue: false hasContentIssue false

C–H···O and C–H···X (X = Cl/Br) hydrogen bond tuned supramolecular assembly: a combined X-ray powder diffraction and Hirshfeld surface analysis

Published online by Cambridge University Press:  11 March 2014

Dipak K. Hazra
Affiliation:
Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
Soumen Ghosh
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India Department of Physics, Gour Mahavidyalaya, Mangalbari, Malda, India
Paramita Chatterjee
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India Department of Physics, Lady Brabourne College, Kolkata 700017, India
Somnath Ghosh
Affiliation:
Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
Monika Mukherjee
Affiliation:
Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
Alok K. Mukherjee*
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystal structures of N-(2-chlorophenyl) acetamide (1) and phenyl (2-bromomethyl) benzoate (2) have been determined from laboratory X-ray powder diffraction data. In addition to intermolecular N–H···O and C–H···O hydrogen bonds, the crystal packing in (1) and (2) exhibits weak C–H···Cl/Br interactions, which facilitate formation of three-dimensional architectures. Hirshfeld surface analysis of compounds (1), (2), and a few related chloro- and bromo-phenyl derivatives retrieved from the CSD indicates that 83–97% of Hirshfeld surface areas in this class of compounds are due to H···H, H···π, H···O, and H···Cl/Br contacts.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakeroy, C. B., Evans, T. A., Seddon, K. R., and Palinko, I. (1999). “The C–H…Cl hydrogen bond: does it exist?” New J. Chem. 23, 145152.CrossRefGoogle Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B 58, 380388.Google Scholar
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO 2004,” J. Appl. Crystallogr. 37, 10251028.Google Scholar
Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., and Nesbitt, D. J. (2011). “Defining the hydrogen bond: an account (IUPAC Technical Report),” Pure Appl. Chem. 83, 16191636.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. 34, 15551573.Google Scholar
Braun, D. E., Gelbrich, T., Kahlenberg, V., Laus, G., Wieser, J., and Griesser, U. J. (2008). “Packing polymorphism of a conformationally flexible molecule (aprepitant),” New J. Chem. 32, 16771685.Google Scholar
Boultif, A. and Louer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. J. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Model. 44, 21332144.Google ScholarPubMed
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. 36, 8695.Google Scholar
David, W. I. F. and Shankland, K. (2008). “Structure determination from powder diffraction data,” Acta Crystallogr., Sect. A 64, 5264.Google Scholar
David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, C. (2002). Structure Determination from Powder Diffraction Data (Oxford University Press. Inc., New York).Google Scholar
Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids (Elsevier, New York).Google Scholar
Desiraju, G. R. (1995). “Supramolecular synthons in crystal engineering – a new organic synthesis,”Angew. Chem. Int. Ed. 34, 23112327.Google Scholar
Desiraju, G. R. (2011). “A bond by any other name,” Angew. Chem. Int. Ed. 50, 5259.CrossRefGoogle ScholarPubMed
Desiraju, G. R. and Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Oxford, UK).Google Scholar
Domagała, M., Grabowski, S. J., Urbaniak, K., and Mloston, G. (2003). “Role of C–H…S and C–H…N hydrogen bonds in organic crystal structures – the crystal and molecular structure of 3-methyl-2,4-diphenyl-(1,3)-thiazolidine-5-spiro-2′-adamantane and 3-methyl-2,4,5,5-tetraphenyl-(1,3)-thiazolidine,” J. Phys. Chem. A 107, 27302736.Google Scholar
Favre-Nicolin, V. and Cerny, R. (2002). FOX, “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 35, 734743.Google Scholar
Fujii, K., Uekusa, H., Fukano, M., and Koshima, H. (2011). “Metastable polymorphic form of isopropylbenzophenone derivative directly obtained by the solid-state photoreaction investigated by ab initio powder X-ray diffraction analysis,” CrystEngComm 13, 31973201.Google Scholar
Gowda, B. T., Foro, S., Terao, H., and Fuess, H. (2009). “ N-(3-Bromophenyl)acetamide,” Acta Crystallogr., Sect. E 65, o1039.Google Scholar
Guo, F., Yu, H., Li, L., Xia, F., Tong, J., and Wang, B. (2013). “Halogen anion-directed helical host chain and the effect of halogen anions on the inclusion property,” Supramol. Chem. 25, 173179.Google Scholar
Harris, K. D. M. (2009). “Structure solution from powder X-ray diffraction data by genetic algorithm techniques, applied to organic materials generated as polycrystalline products from solid state processes,” Mater. Manuf. Process. 24, 293302.Google Scholar
Harris, K. D. M. and Cheung, E. Y. (2004). “How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev. 33, 526538.Google Scholar
Harris, K. D. M., Tremayne, M., and Kariuki, B. M. (2001). “Contemporary advances in the use of powder X-ray diffraction for structure determination,” Angew. Chem. Int. Ed. 40, 16261651.Google Scholar
Hazra, D. K., Mukherjee, A. K., Helliwell, M., and Mukherjee, M. (2012). “Topological features and electronic structure of 4-chloro-1H-pyrrolo[2,3-b]pyridine: experimental charge density analysis and DFT studies,” CrystEngComm 14, 9931000.CrossRefGoogle Scholar
Hazra, D. K., Mukherjee, M., and Mukherjee, A. K. (2013). “ Ab initio powder structure analysis and theoretical study of two thiazole derivatives,” J. Mol. Struct. 1039, 153159.Google Scholar
Jeffrey, G. A. and Saenger, W. (1991). Hydrogen Bonding in Biological Structures (Springer, Berlin).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “ Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.Google Scholar
McKinnon, J. J., Mitchell, A. S., and Spackman, M. A. (1998). “Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals,” Chem. Eur. J. 4, 21362141.Google Scholar
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Crystallogr., Sect. B 60, 627668.CrossRefGoogle ScholarPubMed
McKinnon, J. J., Fabbiani, F. P. A., and Spackman, M. A. (2007). “Comparison of polymorphic molecular crystal structures through Hirshfeld surface analysis,” Cryst. Growth Des. 7, 755769.Google Scholar
Metrangolo, P., Pilati, T., and Resnati, G. (2006). “Halogen bonding and other noncovalent interactions involving halogens: a terminology issue,” CrystEngComm 8, 946947.Google Scholar
Moorthy, J. N., Natarajan, R., Mal, P., and Venugopalan, P. (2004). “Polymorphism of an o-anisaldehyde: a novel example of channel-type organization sustained by weak C–H…O and C–H…N hydrogen bonds,” New J. Chem. 28, 14161419.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Ronaldson, V., Storey, J. M. D., and Harrison, W. T. A. (2005). “ N-(2-Bromophenyl)acetamide,” Acta Crystallogr., Sect. E 61, o3156o3158.Google Scholar
Shibakami, M. and Sekiya, A. (1995). “Phenyl 2-fluorobenzoate, phenyl 4-fluorobenzoate and phenyl benzoate,” Acta Crystallogr., Sect. C 51, 326330.Google Scholar
Shimpi, M. R., SeethaLekshmi, N., and Pedireddi, V. R. (2007). “Supramolecular architecture in some 4-halophenylboronic acids,” Cryst. Growth Des. 7, 19581963.Google Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.Google Scholar
Spackman, M. A. and McKinnon, J. J. (2002). “Fingerprinting intermolecular interactions in molecular crystals,” CrystEngComm 4, 378392.Google Scholar
Steiner, T. (2002). “Hydrogen bond in the solid state,” Angew. Chem. Int. Ed. 41, 4876.Google Scholar
Stewart, J. J. (2007). “Modification of NDDO approximations and application to 70 elements,” J. Mol. Model. 13, 11731213.Google Scholar
Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210213.Google Scholar
Toraya, H. J. (1986). “Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffraction data,” J. Appl. Crystallogr. 19, 440447.Google Scholar
Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S., and Shi, Z. (2006). “Highly selective C − H functionalization/halogenation of acetanilide,” J. Am. Chem. Soc. 128, 74167417.Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D., and Spackman, M. A. (2007). Crystal Explorer (University of Western Australia, Perth, Australia). http://hirshfeldsurface.net/ Google Scholar
Xu, W. J., Zang, Y. L., Wu, G. L., Su, S. P., and Qiu, D. Y. (2007). “4-(Bromomethyl)benzophenone,” Acta Crystallogr., Sect. E 63, o1188o1189.Google Scholar
Zhang, W., Tang, X., Ma, H., Sun, W. H., and Janiak, C. (2008). “{2-[1-(2,6-Diisopropylphenylimino)ethyl]pyridyl}palladium dibromide polymorphs originating from different Br…π and C–H…Br contacts,” Eur. J. Inorg. Chem. 2008, 28302836.Google Scholar
Supplementary material: File

Hazra Supplementary Material

Hazra Supplementary Material

Download Hazra Supplementary Material(File)
File 2.6 MB