Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:12:46.487Z Has data issue: false hasContentIssue false

Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth

Published online by Cambridge University Press:  08 February 2016

Daniel C. Fisher*
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109

Abstract

It has been suggested that certain fossil assemblages consisting of disarticulated and broken remains of small to medium-sized vertebrates (“microvertebrate concentrations”) may be accumulations of incompletely digested material defecated by crocodilians. Experiments on crocodilian digestion show, however, that these reptiles demineralize calcified tissues, frequently leaving intact organic matrices of dentine, cementum, and bones in their feces. Such matrices, even if preserved as fossils, would not resemble most specimens in microvertebrate concentrations. Therefore, crocodilian digestion does not appear to have been an important factor in the formation of these fossil assemblages. Teeth similar to those defecated by crocodilians nevertheless do occur in the fossil record. Such teeth, lacking enamel but often complete in other respects, are interpreted here as having been digested by crocodilians, defecated as demineralized organic matrices, and subsequently remineralized. Enamel, with its extremely low organic content, does not yield a demineralized matrix susceptible to remineralization. A number of recently recognized occurrences of enamel-less teeth attest to the significance of crocodilian digestion as a factor in the taphonomic history of many Mesozoic and Cenozoic fossil vertebrate assemblages.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barker, R. T. 1975. Experimental and fossil evidence for the evolution of tetrapod bioenergetics. pp. 365399. In: Gates, D. and Schmerl, R., eds. Perspectives on Biophysical Ecology. Springer Verlag; New York.Google Scholar
Bown, T. M. 1979. Geology and mammalian paleontology of the Sand Creek Facies, Lower Willwood Formation (Lower Eocene), Washakie County, Wyoming. Geol. Surv. Wyoming, Mem. 2:1151.Google Scholar
Carpenter, K. and Lindsey, D. 1980. The dentary of Brachychampsa montana Gilmore (Alligatorinae; Crocodylidae), a Late Cretaceous turtle-eating alligator. J. Paleontol. 54:12131217.Google Scholar
Clemens, W. A. Jr. 1973. Fossil mammals of the type Lance Formation Wyoming. Part III. Eutheria and Summary. Univ. Calif. Publ. Geol. Sci. 94:1102.Google Scholar
Cott, H. B. 1961. Scientific results of an inquiry into the ecology and economic status of the Nile crocodile (Crocodilus niloticus) in Uganda and Northern Rhodesia. Trans. Zool. Soc. London. 29:211356.CrossRefGoogle Scholar
daC Diefenbach, C. O. 1975a. Gastric function in Caiman crocodilus (Crocodylia: Reptilia), Part I: Rate of gastric digestion and gastric motility as a function of temperature. Comp. Biochem. Physiol. 51A:259265.CrossRefGoogle Scholar
daC Diefenbach, C. O. 1975b. Gastric function in Caiman crocodilus (Crocodylia: Reptilia), Part I: Rate of gastric digestion and pH and proteolysis. Comp. Biochem. Physiol. 51A:267274.CrossRefGoogle Scholar
Dodson, P. 1971. Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur Provincial Park, Alberta, Canada. Palaeogeogr., Palaeoclimatol., Palaeoecol. 10:2174.CrossRefGoogle Scholar
Fisher, D. C. 1981a. Mode of preservation of the Shotgun local fauna (Paleocene, Wyoming) and its implication for the taphonomy of a microvertebrate concentration. Contrib. Mus. Paleontol., Univ. Mich. 25.Google Scholar
Fisher, D. C. 1981b. Taphonomic interpretation of enamel-less teeth in the Shotgun local fauna (Paleocene, Wyoming). Contrib. Mus. Paleontol., Univ. Mich. 25.Google Scholar
Gadow, H. 1901. Amphibia and Reptiles. 668 pp. Macmillan and Co., Ltd.; London.CrossRefGoogle Scholar
Gans, C. 1976. Questions in crocodilian physiology. Zool. Afr. 11:241243.Google Scholar
Guibé, J. 1970. L'appareil digestif. pp. 521548. In: Grassé, P.-P., ed. Traité de Zoologie XIV (Fasc. II). Masson et Cie; Paris.Google Scholar
Jepsen, G. L. 1963. Eocene vertebrates, coprolites, and plants in the Golden Valley Formation of western North Dakota. Bull. Geol. Soc. Am. 74:673684.CrossRefGoogle Scholar
Mayhew, D. F. 1977. Avian predators as accumulators of fossil mammal material. Boreas. 6:2531.CrossRefGoogle Scholar
McGrew, P. O. 1963. Environmental significance of sharks in the Shotgun Fauna, Paleocene of Wyoming. Contrib. Geol. 2:3941.Google Scholar
McIlhenny, E. A. 1935. The Alligator's Life History. Christopher Publ. House; Boston.Google Scholar
Mellett, J. S. 1974. Scatological origin of microvertebrate fossil accumulations. Science. 185:349350.CrossRefGoogle ScholarPubMed
Neill, W. T. 1971. The Last of the Ruling Reptiles. Alligators, Crocodiles and their Kin. 486 pp. Columbia Univ. Press; New York.Google Scholar
Nürnberger, L. 1934. Koproporphyrin im tertiären Krokodilkot. Nova Acta Leopold. N.F. 1:324325.Google Scholar
Petzold, H. G. 1959. Gewöllbildung bei Krokodilen. Zool. Anz. 163:7683.Google Scholar
Petzold, H. G. 1967. Notizen zur Gewöllbildung bei einen Bindenwarem (Varanus salvator) und einige allgemeine Bemerkungen über Reptiliengewölle. Der Zool. Garten, N.F. 34:134138.Google Scholar
Pough, F. H. 1977. Body proportions and feeding specializations of viperid snakes. Am. Zool. 17:870.Google Scholar
Reese, A. M. 1913. The histology of the enteron of the Florida alligator. Anat. Rec. 7:105129.CrossRefGoogle Scholar
Robert, E. 1832/1833. Sur des coprolithes trouvés à Passy. Bull. Soc. Géol. de France, Série 1. 3:7273.Google Scholar
Sicher, H. and Bhaskar, S. N. 1972. Oral Histology and Embryology. 7th ed.393 pp. C. V. Mosby Co.; St. Louis.Google Scholar
Simons, E. L. 1968. Hunting the “Dawn Apes” of Africa. Discovery. 4:1932.Google Scholar
Simpson, G. G. 1937. The Fort Union of the Crazy Mountain Field, Montana and its mammalian faunas. U.S. Natl. Mus. Bull. 169:1287.CrossRefGoogle Scholar
Skoczylas, R. 1978. Physiology of the digestive tract. pp. 589717. In: Gans, C. and Gans, K. A., eds. Biology of the Reptilia, Vol. 8, 782 pp. Academic Press; London.Google Scholar
Staley, F. H. 1925. A study of the gastric glands of Alligator mississippiensis. J. Morph. Physiol. 40:169189.CrossRefGoogle Scholar
Voigt, E. 1934. Die Fische aus der mitteleozänen Braunkohle des Geiseltales, mit besonderer Berüchsichtigung der erhaltenen Weichteile. Nova Acta Leopold. N.F. 2:21146.Google Scholar
Waldman, M. 1970. Comments on a Cretaceous coprolite from Alberta, Canada. Can. J. Earth Sci. 7:10081012.CrossRefGoogle Scholar
Walther, J. and Weigelt, J. 1932. Die eozäne Lebewelt in der Braunkohle des Geiseltals. Nova Acta Leopold. N.F. 1:127.Google Scholar
Weigelt, J. 1927. Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. 227 pp. Max Weg; Leipzig.Google Scholar
Wetmore, A. 1943. The occurrence of feather impressions in the Miocene deposits of Maryland. The Auk. 60:440441.CrossRefGoogle Scholar
Wolff, R. G. 1973. Hydrodynamic sorting and ecology of a Pleistocene mammalian assemblage from California (U.S.A.). Palaeogeogr., Palaeoclimatol., Palaeoecol. 13:91101.CrossRefGoogle Scholar
Young, C. C. 1964. New fossil crocodiles from China. Vert. Palasiatica. 8:189210.Google Scholar