Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T00:22:38.162Z Has data issue: false hasContentIssue false

Analysis of function in the absence of extant functional homologues: a case study using mesotheriid notoungulates (Mammalia)

Published online by Cambridge University Press:  14 July 2015

Bruce J. Shockey
Affiliation:
Department of Vertebrate Paleontology, American Museum of Natural History, New York, New York 10024. E-mail: [email protected]
Darin A. Croft
Affiliation:
Department of Anatomy, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4930. E-mail: [email protected]
Federico Anaya
Affiliation:
Facultad de Ingeniería Geológica, Universidad Autónoma “Tomás Frías,” Potosí, Bolivia

Abstract

We use two approaches to test hypotheses regarding function in a group of extinct mammals (Family Mesotheriidae, Order Notoungulata) that lack any close extant relatives: a principle-derived paradigm method and empirically derived analog method. Metric and discrete morphological traits of mesotheriid postcranial elements are found to be consistent with the morphology predicted by a modified version of Hildebrand's paradigm for scratch diggers. Ratios of in-force to out-force lever arms based on skeletal elements indicate that the mesotheriids examined had limbs modified for high out-forces (i.e., they were “low geared”), consistent with the digging hypothesis. Other mesotheriid characters, such as cleft ungual phalanges, a curved olecranon, and a highly modified pelvis (with extra vertebrae incorporated into the sacrum and fusion between the ischium and the axial skeleton) are regarded as being functionally significant for digging and also occur in a variety of extant diggers. Analog methods indicate that mesotheriids share numerous traits common to a variety of extant diggers. Principal component analyses of postcranial elements indicate that mesotheriids consistently share morphometric space with larger extant fossorial mammals: aardvark, anteaters, wombats, and badger. Likewise, discriminant function analyses categorized mesotheriids as fossorial, though imperfectly analogous to the extant diggers analyzed. Thus, both theory-driven and empirically derived methods of estimating function in these extinct taxa support a digging hypothesis for the mesotheriids examined. Adaptations for digging in both the forelimb and sacropelvic functional complexes of mesotheriids provide independent support for the fossorial hypothesis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alston, E. R. 1876. On the classification of the Order Glires. Proceedings of the Zoological Society of London 1876:6198.CrossRefGoogle Scholar
Ameghino, F. 1891. Los monos fósiles del Eoceno de la República Argentina. Revista Argentina de Historia Natural 1:383397.Google Scholar
Ameghino, F. 1905. La perforación astragaliana en los mamíferos no es un carácter originariamente primitivo. Anales del Museo Nacional de Buenos Aires 3:349460.Google Scholar
Ameghino, F. 1906. La perforación astragaliana en el Orycteropus y el origen de los Orycteropidae. Anales del Museo Nacional de Buenos Aires 3:5995.Google Scholar
Bock, W. J., and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution 19:269299.CrossRefGoogle Scholar
Bond, M., Cerdeño, E., and López, G. 1995. Los ungulados nativos de América del Sur. Pp. 259292 in Alberdi, M. T., Leone, G., and Tonni, E. P., eds. Evolución biológica y climática de la Región Pampeana durante los últimos cinco millones de años. Un ensayo de correlación con el Mediterráneo occidental. Monografías del Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid.Google Scholar
Bryant, H. N., and Russell, A. P. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337:405418.Google Scholar
Bryant, H. N., and Seymour, K. L. 1990. Observations and comments on the reliability of muscle reconstruction in fossil vertebrates. Journal of Morphology 206:109118.CrossRefGoogle ScholarPubMed
Cerdeño, E., Riga, B. González, and Bordonaro, O. 2006. Primer hallazgo de mamíferos en la Formación Mariño (Mioceno) en Divisadero Largo (Mendoza, Argentina). Ameghiniana 43:205214.Google Scholar
Chaffee, R. G. 1952. The Deseadan vertebrate fauna of the Scarrit Pocket, Patagonia. Bulletin of the American Museum of Natural History 98:509562.Google Scholar
Cifelli, R. L. 1993. The phylogeny of the native South American ungulates. Pp. 195216 in Szalay, F. S., Novacek, M. J., and McKenna, M. C., eds. Mammal phylogeny: placentals. Springer, New York.Google Scholar
Coombs, M. C. 1983. Large mammalian clawed herbivores: a comparative study. Transactions of the American Philosophical Society, New Series 73:196.Google Scholar
Croft, D. A., Flynn, J. J., and Wyss, A. 2004. Notoungulata and Litopterna of the early Miocene Chucal Fauna, northern Chile. Fieldiana: Geology (new series) 50:152.Google Scholar
Elissamburu, A., and Vizcaíno, S. F. 2004. Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology 262:145159.CrossRefGoogle Scholar
Frenguelli, J. 1928. Observaciones geológicas en la región costanera sur de la Provincia de Buenos Aires. Anales de la Facultad de Ciencias de la Educación, Universidad Nacional del Litoral 2:1145.Google Scholar
Garland, T. Jr., and Janis, C. M. 1993. Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology 229:133151.CrossRefGoogle Scholar
Gervais, P. 1867. Sur une nouvelle collection d'ossements fossiles de mammifères recueillie par M. Fr. Seguin dans la Confédération Argentine. Comptes Rendus de l'Académie des Sciences 55:279282.Google Scholar
Gervais, P. 1869. Zoologie et paléontologie générales: nouvelles recherches sur les animaux vertébrés vivants et fossiles. Libraire de la Société de Géographie, Paris.Google Scholar
Gould, S. J. 1970. Evolutionary paleontology and the science of form. Earth-Science Reviews 6:77119.Google Scholar
Hildebrand, M. 1974. Analysis of vertebrate structure. Wiley, New York.Google Scholar
Hildebrand, M. 1985. Digging of quadrupeds. Pp. 90108 in Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D. B., eds. Functional vertebrate morphology. Belknap Press of Harvard University Press, Cambridge.CrossRefGoogle Scholar
Hildebrand, M., and Goslow, G. 2001. Analysis of vertebrate structure, 5th ed. Wiley, New York.Google Scholar
Janis, C. M. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In Russell, D. E., Santoro, J. P., and Sigogneau-Russell, D., eds. Teeth revisited. Proceedings of the VIIth International Congress of Dental Morphology. Mémoires du Muséum d'Histoire Naturelle, Paris, série C 53:371391.Google Scholar
Janis, C. M. 1995. Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. Pp. 7698 in Thomason, 1995.Google Scholar
Larson, S. G., and Stern, J. T. J. 1989. Role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretations of humeral morphology. American Journal of Physical Anthropology 79:369378.Google Scholar
Lauder, G. V. 1995. On the inference of function from structure. Pp. 118 in Thomason, 1995.Google Scholar
Loomis, F. B. 1914. The Deseado Formation of Patagonia. Runford Press, Concord, N.H. Google Scholar
Lydekker, R. 1886. Catalog of fossil Mammalia in the British Museum of Natural History, Part III. Taylor and Francis, London.Google Scholar
Lydekker, R. 1893. Contributions to a knowledge of fossil vertebrates of Argentina. III. A study of extinct Argentine ungulates. Anales del Museo de La Plata, Paleontología Argentina 2:191.Google Scholar
Martin, L. D., and Bennett, D. K. 1977. The burrows of the Miocene beaver Palaeocastor, western Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 22:173193.CrossRefGoogle Scholar
McNaughton, S. J., Tarrants, J. L., McNaughton, M. M., and Davis, R. H. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528535.CrossRefGoogle Scholar
Owen, R. 1840. Fossil Mammalia. Pp. 13111 in Darwin, C., ed. The zoology of the voyage of the H. M. S. Beagle, under the command of Captain FitzRoy, R. N., during the years 1832–1836. Smith, Elder, London.Google Scholar
Pérez-Barbería, F. J., and Gordon, I. J. 2001. Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proceedings of the Royal Society of London B 268:10231032.Google Scholar
Reguero, M. A., and Castro, P. V. 2004. Un nuevo Trachytheriinae (Mammalia, +Notoungulata) del Deseadense (Oligoceno tardío) de Patagonia, Argentina: implicancias en la filogenia, biogeografía y bioestratigrafía de los Mesotheriidae. Revista Geológica de Chile 31:4564.Google Scholar
Riggs, E. S. 1937. Mounted skeleton of Homalodotherium . Field Museum of Natural History, Geological Series, VI:233243.Google Scholar
Rose, K. D. 1999. Burrowing adaptations in vertebrates. Pp. 220226 in Singer, R., ed. Encyclopedia of paleontology. Fitzroy-Dearborn, Chicago.Google Scholar
Rose, K. D., and Emry, R. J. 1993. Relationships of Xenarthra, Pholidota, and fossil “edentates”: the morphological evidence. Pp. 81102 in Szalay, F. S., Novacek, M. J., and McKenna, M. C., eds. Mammal phylogeny. Springer, New York.Google Scholar
Roth, S. 1903. Los ungulados sudamericanos. Anales del Museo de La Plata, Sección Paleontología 5:136.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. British Journal for the Philosophy of Science 15:2740.Google Scholar
Scott, W. B. 1912. Mammalia of the Santa Cruz Beds, Vol. VI. aleontology, Part II. Toxodonta. Pp. 111238 in Scott, W. B., ed. Reports of the Princeton University Expeditions to Patagonia, 1896–1899. Princeton University, Schweizbart, E. (Nägele, E.), Stuttgart.Google Scholar
Scott, W. B. 1930. A partial skeleton of Homalodontotherium from the Santa Cruz beds of Patagonia. Memoirs of the Field Museum of Natural History 50:139.Google Scholar
Scott, W. B. 1937. A history of land mammals in the Western Hemisphere. Macmillan, New York.Google Scholar
Serres, M. 1867. De l'ostéographie du Mesotherium et de ses affinitiés zoologiques. Comptes Rendus de l'Académie des Sciences, Paris 65:617, 140–148, 273–278, 429–437, 593–599, 740–748, 841–848.Google Scholar
Shockey, B. J. 1997a. Toxodontia of Salla, Bolivia (late Oligocene): taxonomy, systematics, and functional morphology. Ph.D. dissertation. University of Florida, Gainesville.Google Scholar
Shockey, B. J. 1997b. Two new notoungulates (Family Notohippidae) from the Salla Beds of Bolivia (Deseadan: late Oligocene): systematics and functional morphology. Journal of Vertebrate Paleontology 17:584599.CrossRefGoogle Scholar
Shockey, B. J., and Anaya, F. 2007. Postcranial osteology of mammals of Salla, Bolivia (late Oligocene): form, function, and phylogenetic implications. In Sargis, E. and Dagosto, M., eds., Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Kluwer Academic/Plenum, New York (in press).Google Scholar
Shockey, B. J., Salas, R., Quispe, R., Flores, A., Sargis, E. J., Acosta, J., Pino, A., Jarica, N. J., and Urbina, M. 2006. Discovery of Deseadan fossils in the upper Moquegua Formation (late Oligocene-?early Miocene) of southern Peru. Journal of Vertebrate Paleontology 26:205208.Google Scholar
Simpson, G. G. 1940. The names Mesotherium and Typotherium . American Journal of Science 238:518521.CrossRefGoogle Scholar
Simpson, G. G. 1967. The beginning of the age of mammals in South America, Part II. Bulletin of the American Museum of Natural History 137:1260.Google Scholar
Sinclair, W. J. 1909. Mammalia of the Santa Cruz Beds, Vol. VI. aleontology, Part I. Typotheria. Pp. 1110 in Scott, W. B., ed. Reports of the Princeton University Expeditions to Patagonia, 1896–1899. Princeton University, Schweizbart, E. (Nägele, E.), Stuttgart.Google Scholar
Solounias, N., and Moelleken, M. C. 1993. Dietary adaptation of some extinct ruminants determined by premaxillary shape. Journal of Mammalogy 74:10591071.Google Scholar
Solounias, N., Teaford, M., and Walker, A. 1988. Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14:287300.Google Scholar
Sydow, H. 1988. Postcranial skeleton of Trachytherus (Mammalia, Notoungulata) with an evaluation of dentition. . University of Florida, Gainesville.Google Scholar
Szalay, F. S., and Schrenk, F. 1998. The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates.” Kaupia 7:97186.Google Scholar
Taylor, B. K. 1985. Functional anatomy of the forelimb in vermilinguas (anteaters). Pp. 163171 in Montgomery, G. G., ed. The evolution and ecology of armadillos, sloths, and vermilinguas. Smithsonian Institution Press, Washington, D.C. Google Scholar
Thomason, J. J., ed. 1995. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Troughton, E. 1947. The furred animals of Australia. Scribner's, New York.Google Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7:162182.Google Scholar
Vaughan, T., Ryan, J., and Czaplewski, N. 2000. Mammalogy, 4th ed. Saunders College Publishing, Fort Worth, Tex.Google Scholar
Villarroel, C. 1974. Les Mésothérinés (Notoungulata, Mammalia) du Pliocène de Bolivie. Leurs rapports avec ceux d'Argentine. Annales de Paléontologie 60:245281.Google Scholar
Vizcaíno, S. F., Zárate, M., Bargo, M. S., and Dondas, A. 2001. Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders. Acta Palaeontologica Polonica 46:289301.Google Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Pp. 1933 in Thomason, 1995.Google Scholar
Woolnough, A. P., and Steele, V. R. 2001. The palaeoecology of the Vombatidae: did giant wombats burrow? Mammal Review 31:3345.CrossRefGoogle Scholar
Zittel, K. A. 1892. Handbuch der Palaeontologie, IV. Bd. Vertebrata (Mammalia). R. Oldenbourg, Munich.Google Scholar
Supplementary material: File

Shockey et al. supplementary material

Appendix 1

Download Shockey et al. supplementary material(File)
File 161.8 KB
Supplementary material: File

Shockey et al. supplementary material

Appendix 2

Download Shockey et al. supplementary material(File)
File 111.6 KB
Supplementary material: File

Shockey et al. supplementary material

Appendix 3

Download Shockey et al. supplementary material(File)
File 119.3 KB