Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T20:51:57.620Z Has data issue: false hasContentIssue false

Rapid carbon injection and transient global warming during the Paleocene-Eocene thermal maximum

Published online by Cambridge University Press:  01 April 2016

A. Stuijs*
Affiliation:
Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Utrecht, the Netherlands
H. Brinkhuis
Affiliation:
Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Utrecht, the Netherlands
*
*Corresponding author. Email:[email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Paleocene-Eocene Thermal Maximum (PETM), ~55.5 Myr ago, was a geologically brief (~170 kyr) episode of globally elevated temperatures, which occurred superimposed on the long-term late Paleocene and early Eocene warming trend (Fig. 1). It was marked by a 5 – 8° C warming in both low and high-latitude regions, a perturbation of the hydrological cycle and major biotic response on land and in the oceans, including radiations, extinctions and migrations (see overviews in Bowen et al., 2006; Sluijs et al., 2007a).

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Bains, S., Norris, R.D., Corfield, R.M. & Faul, K.L., 1999. Termination of global warmth at the Paleocene/Eocene boundary ghrough productivity feedbacks. Nature, 407: 171174.Google Scholar
Bowen, G.J., Bralower, T.J., Delaney, M.L., Dickens, G.R., Kelly, D.C., Koch, P.L., Kump, L.R., Meng, J., Sloan, L.C., Thomas, E., Wing, S.L. & Zachos, J.C., 2006. Eocene Hyperthermal Event Offers Insight Into Greenhouse Warming,EOS, Transactions of the American Geophysical Union, 87(17): 165169.Google Scholar
Cramer, B.S., Wright, I.D., Kent, D.V. & Aubry, M.-P, 2003. Orbital climate forcing of δ13C excursions in the late Paleocene - early Eocene (chrons C24n-C25n), Paleoceanography, 18(4): 10.1029/2003PA000909.CrossRefGoogle Scholar
Crouch, E.M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H.E.G., Rogers, K.M., Egger, H. & Schmitz, B., 2001. Global dinoflagellate event associated with the late Paleocene thermal maximum, Geology, 29(4): 315318.Google Scholar
Dickens, G.R., O’Neil, J.R., Rea, D.K. & Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10: 965971.Google Scholar
Dickens, G.R., Castillo, M.M. & Walker, J.C.G., 1997: A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25 (3): 259262.Google Scholar
Emanuel, K., DesAutels, C., Holloway, C. & Korty, R., 2004: Environmental Control of Tropical Cyclone Intensity, Journal of the Atmospheric Sciences, 61: 843858.Google Scholar
Huber, M. & Nof, D., 2006. The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene, Palaeogeography, Palaeoclimatology, Palaeoecology, 231(1-2): 928.Google Scholar
John, C.M., Bohaty, S.M., Zachos, J.C., Sluijs, A., Gibbs, S., Brinkhuis, H. & Bralower, T.J., 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling, Paleoceanography, 23, PA2217, doi:10.1029/2007PA001465.Google Scholar
Kelly, D.C., Zachos, J.C., Bralower, T.J. & Schellenberg, S.A., 2005. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum, Paleoceanography, 20, PA4023, doi:10.1029/2005PA001163.Google Scholar
Kennett, J.P. & Stott, L.D., 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353: 225229.Google Scholar
Koch, P.L., Zachos, J.C. & Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary, Nature, 358: 319322.Google Scholar
Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Rähl, U., Bowles, J. & Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435 (7045): 10831087.Google Scholar
Nicolo, M.J., Dickens, G.R., Hollis, C.J. & Zachos, J.C. 2007. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35 (8): 699702.Google Scholar
Pearson, P.N., Van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, J.M. & Wade, B.S., 2007. Stable warm tropical climate through the Eocene Epoch, Geology, 35(3): 211214.Google Scholar
Panchuk, K., Ridgwell, A. & Kump, L.R., 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison, Geology, 36(4): 315318.CrossRefGoogle Scholar
Ravizza, G., Norris, R.N., Blusztajn, J. & Aubry, M.-P., 2001. An osmium isotope excursion associated with the late Paleocene thermal maximum: Evidence of intensified chemical weathering. Paleoceanography, 16(2): 155163.Google Scholar
Röhl, U., Westerhold, T., Monechi, S., Thomas, E., Zachos, J.C. & Donner, B., 2005. The third and final early Eocene thermal maximum: characteristics, timing, and mechanisms of the ‘X’ event, Geological Society of America Annual Meeting - Abstracts, 37 (7): 264.Google Scholar
Schmidt, G.A., & Shindell, D.T., 2003. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates, Paleoceanography, 18 (1): doi:10.1029/2002PA000757CrossRefGoogle Scholar
Schouten, S., Woltering, M., Rijpstra, W.I.C., Sluijs, A., Brinkhuis, H., Sinninghe, & Damsté, J.S., 2007. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic, Earth and Planetary Science Letters, 258, 581592.Google Scholar
Sloan, L.C. & Pollard, D., 1998: Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world, Geophysical Research Letters, 25(18): 35173520.Google Scholar
Sluijs, A. Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J., Moran, K. & the Expedition 302 Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441 (7093): 610613.CrossRefGoogle ScholarPubMed
Sluijs, A., Bowen, G.J., Brinkhuis, H., Lourens, L.J. & Thomas, E., 2007a. The Palaeocene-Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In: Williams, M., et al. (eds): Deep time perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications, The Geological Society, London, pp. 323349.Google Scholar
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S.M., John, C.M., Zachos, J.C., Sinninghe Damsté, J.S., Crouch, E.M. & Dickens, G.R., 2007. Environmental precursors to rapid light carbon injection at the Paleocene/Eocene boundary, Nature, 450(7173): 12181221.Google Scholar
Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-J., Sangiorgi, F., Sinninghe Damsté, J.S. & Brinkhuis, H., 2008. Arctic late Paleocene - Early Eocene paleoenvironments with special emphasis on the Paleocene - Eocene thermal maximum (Lomonosov Ridge, IODP Expedition 302), Paleoceanography, 23, PA1S11, doi:10.1029/2007PA001495.Google Scholar
Sriver, R.L. & Huber, M., 2007. Observational evidence for an ocean heat pump induced by tropical cyclones, Nature, 447(7144): 577580.Google Scholar
Thomas, D.J., Zachos, J.C., Bralower, T.J., Thomas, E. & Bohaty, S., 2002. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology, 30: 10671070.Google Scholar
Weijers, J.W.H., Schouten, S., Sluijs, A., Brinkhuis, H. & Sinninghe Damsté, J.S., 2007. Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth and Planetary Science Letters, 261(1-2): 230238.Google Scholar
Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L.J. & Zachos, J.C., 2007. On the duration of Magnetochrons C24r and C25n, and the timing of early Eocene global warming events: Implications from the ODP Leg 208 Walvis Ridge depth transect, Paleoceanography, 22(PA2201): doi:10.1029/2006PA001322.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292: 686693.Google Scholar
Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, U.R., Brill, A., Bralower, T.J. & Premoli Silva, L. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum, Science, 302: 15511554.CrossRefGoogle ScholarPubMed
Zachos, J.C. Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, L. Lourens, L.J., Carren, H. & Kroon, D., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum, Science, 308(5728): 16111615.CrossRefGoogle ScholarPubMed
Zachos, J.C. Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. & Bralower, T.J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and Isotope Data, Geology, 34(9): 737740.Google Scholar
Zeebe, R.E. & Zachos, J.C., 2007. Reversed deep-sea carbonate ion basin gradient during the Paleocene-Eocene thermal maximum, Paleoceanography, 22(PA3301): doi:10.1029/2006PA001395.Google Scholar