Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-03T19:12:46.914Z Has data issue: false hasContentIssue false

AN ALGORITHM OF COMPUTING COHOMOLOGY INTERSECTION NUMBER OF HYPERGEOMETRIC INTEGRALS

Published online by Cambridge University Press:  07 May 2021

SAIEI-JAEYEONG MATSUBARA-HEO*
Affiliation:
Graduate School of Science Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
NOBUKI TAKAYAMA
Affiliation:
Graduate School of Science Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 [email protected]

Abstract

We show that the cohomology intersection number of a twisted Gauss–Manin connection with regularization condition is a rational function. As an application, we obtain a new quadratic relation associated to period integrals of a certain family of K3 surfaces.

Type
Article
Copyright
© 2021 The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphson, A., Hypergeometric functions and rings generated by monomials , Duke Math. J. 73 (1994), 269290.CrossRefGoogle Scholar
Ando, K., Esterov, A., and Takeuchi, K., Monodromies at infinity of confluent A-hypergeometric functions , Adv. Math. 272 (2015), 119.CrossRefGoogle Scholar
Aomoto, K. and Kita, M., Theory of Hypergeometric Functions (in Japanese) , Springer, Tokyo, 1994 (English translation available from Springer, Tokyo, 2011).Google Scholar
Beukers, F., Irreducibility of A-hypergeometric systems , Indag. Math. 21 (2011), 3039.CrossRefGoogle Scholar
Beukers, F. and Jouhet, F., Duality relations for hypergeometric series , Bull. Lond. Math. Soc. 47 (2015), no. 2, 343358.CrossRefGoogle Scholar
Cho, K. and Matsumoto, K., Intersection theory for twisted cohomologies and twisted Riemann’s period relations I , Nagoya Math. J. 139, (1995), 6786.CrossRefGoogle Scholar
Deligne, P., Équations Différentielles à Points Singuliers Réguliers , Lecture Notes in Mathematics 163, Springer, Berlin and New York, 1970.CrossRefGoogle Scholar
Dimca, A., Maaref, F., Sabbah, C., and Saito, M., Dwork cohomology and algebraic $\;\mathbf{\mathcal{D}}$ -modules , Math. Ann. 318, (2000), no. 1, 107125.CrossRefGoogle Scholar
Gel’f, I. M., Kapranov, M. M., and Zelevinsky, A. V., Hypergeometric functions and toric varieties (in Russian) , Funktsional. Anal. I Prilozhen. 23 (1989), no. 2, 1226; translation in Funct. Anal. Appl. 23 (1989), no. 2, 94–106.Google Scholar
Gel’fand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Generalized Euler integrals and $A$ -hypergeometric functions , Adv. Math. 84 (1990), 255271.CrossRefGoogle Scholar
Gel’fand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, Resultants and Multidimensional Determinants , Birkhauser, Basel, 1994.CrossRefGoogle Scholar
Goto, Y. and Matsumoto, K., Pfaffian of Appell’s hypergeometric system ${F}_4$ in terms of the intersection form of twisted cohomology groups , Nagoya Math. J. 217 (2015), 6194.CrossRefGoogle Scholar
Goto, Y. and Matsumoto, K., Pfaffian equations and contiguity relations of the hypergeometric function of type $\ \left(k+1,k+n+2\right)$ and their applications , Funkcialaj Ekvacioj 61 (2018), 315347.CrossRefGoogle Scholar
Hibi, T. (ed.), Gröbner Bases: Statistics and Software Systems . Springer, New York, 2013.CrossRefGoogle Scholar
Hibi, T., Nishiyama, K., and Takayama, N., Pfaffian systems of $A$ -hypergeometric equations I: Bases of twisted cohomology groups , Adv. Math. 306 (2017), 303327.CrossRefGoogle Scholar
Hotta, R., Equivariant D-modules, preprint, arXiv:math/9805021v1 [math.RT].Google Scholar
Hotta, R., Takeuchi, K., and Tanisaki, T., D-modules, Perverse Sheaves, and Representation Theory , Progress in Mathematics 236, Birkhäuser, Boston, 2008.CrossRefGoogle Scholar
Kita, M. and Yoshida, M., Intersection theory for twisted cycles , Math. Nachr. 166 (1994), 287304.CrossRefGoogle Scholar
Matsubara-Heo, S. J., Euler and Laplace integral representations of GKZ hypergeometric functions, preprint, arXiv:1904.00565v4 [math.CA].Google Scholar
Matsubara-Heo, S. J. and Takayama, N., “Algorithms for Pfaffian Systems and Cohomology Intersection Numbers of Hypergeometric Integrals” in Mathematical Software—ICMS , Lecture Notes in Computer Science 12097, Springer, New York, 2020, 7384 (Errata at http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection2).Google Scholar
Matsubara-Heo, S. J. and Takayama, N., GKZ hypergeometric system (manual for mt_gkz.rr), http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection2/Prog/mt_gkz-en.pdf Google Scholar
Matsumoto, K., Intersection numbers for logarithmic $k$ -forms , Osaka J. Math. 35 (1998), 873893.Google Scholar
Narumiya, N. and Shiga, H., “The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope” In Proceedings on Moon-Shine and Related Topics (Montréal, QC, 1999) , CRM Proc. Lecture Notes 30, Amer. Math. Soc., Providence, RI, 2001, 139161.CrossRefGoogle Scholar
Oaku, T., Takayama, N., and Tsai, H., Polynomial and rational solutions of holonomic systems , J. Pure Appl. Alg 164 (2001), 199220.CrossRefGoogle Scholar
Ohara, K., Sugiki, Y., and Takayama, N., Quadratic relations for generalized hypergeometric functions pFp−1 , Funkcialaj Ekvacioj 46 (2003), 213251.CrossRefGoogle Scholar
Saito, M., Sturmfels, B., and Takayama, N., Gröbner Deformations of Hypergeometric Differential Equations , Springer, New York, 2000.CrossRefGoogle Scholar
Schulze, M. and Walther, U., Resonance equals reducibility for A-hypergeometric systems , Algebra Number Theory 6 (2012), 527537.CrossRefGoogle Scholar
Serre, J.-P., Géométrie algébrique et géométrie analytique , Ann. Inst. Fourier Grenoble 6 (1955–1956), 142.CrossRefGoogle Scholar
Tibăr, M., Polynomials and Vanishing Cycles . Cambridge Tracts in Mathematics 170, Cambridge University Press, Cambridge, MA, 2007, xii+253 pp.CrossRefGoogle Scholar
Verdier, J.-L., Stratifications de Whitney et théorème de Bertini–Sard , Invent. Math. 36 (1976), 295312.CrossRefGoogle Scholar