Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:43:00.675Z Has data issue: false hasContentIssue false

ZnO Thin Film Surface Acoustic Wave based Lab-on-a-Chip

Published online by Cambridge University Press:  31 January 2011

Jack Luo
Affiliation:
[email protected], University of Bolton, Centre for Material Research & Innovation, Deane Road, Bolton, BL3 5AB, United Kingdom, 0044 1204 903523
Yongqing Richard Fu
Affiliation:
[email protected], Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh, United Kingdom
Xiaoye Du
Affiliation:
[email protected], Cambridge University, Eng. Dept., Cambridge, United Kingdom
Daesik Lee
Affiliation:
[email protected], Electronics and Telecommunications Research institute, Daejeon, Korea, Republic of
Sung Maeng
Affiliation:
[email protected], Electronics and Telecommunications Research institute, Daejeon, Korea, Republic of
Andrew Flewitt
Affiliation:
[email protected], Cambridge University, Eng. Dept., Cambridge, United States
Bill Milne
Affiliation:
[email protected], Cambridge University, Eng. Dept., Cambridge, United Kingdom
Get access

Abstract

Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ˜5cm/s and droplet pumping speeds of ˜1cm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ballantine, D.S. White, R.M. Martin, S.J. Ricco, A. J. Zellers, E.T. Frye, G.C. Wohltjen, H.Acoustic wave sensor: Theory, Design, & Physico-Chemical ApplicationsAcademic Press, 1996.Google Scholar
2 Hoummady, M. Campitelli, A. Wlodarski, W.; Smart. Mater. Struct. 6 (1997) 647.Google Scholar
3 Galipeau, D.W. Sory, P.R. Vetelino, K.A. Mileham, R.D.; Smart. Mater. Struct., 6 (1997) 658.Google Scholar
4 Vellekoop, M.J.; Ultasonics, 36 (1998) 7.Google Scholar
5 Shiokawa, S.; Kondoh, J. Jpn, J. Appl. Phys. 43 (2004) 2799.Google Scholar
6 Gizeli, E.; Smart. Mater. & Struct. 6 (1997) 700.Google Scholar
7 Guttenberg, Z. Muller, H. Habermuller, H. Geisbauer, A. Pipper, J. Felbel, J. Kielpinski, M. Scriba, J. and Wixforth, A. Lab Chip 5 (2005) 308.Google Scholar
8 Renaudin, A. Tabourier, P. Camart, J.C. and Druon, C. J. Appl. Phys. 100 (2006) 116101.Google Scholar
9 Renaudin, A. Tabourier, P. Zhang, V. Camart, J.C. and Druon, C. Sens. Actuator B-Chem. 113 (2006) 389.Google Scholar
10 Du, X. Y. Fu, Y. Q. Tan, S. C. Luo, J. K. et al. J. Phys.: Conf. Ser. 76 (2007) 012035.Google Scholar
11 Gardner, J. W. Varadan, V. K. and Awadelkarim, O. O.Microsensors, MEMS and Smart Device”. (Wiley, New York, 2001).Google Scholar
12 Frommelt, T., Gogel, D., Kostur, M., Talkner, P., Hanggi, P. and Wixforth, A.; IEEE Trans. Ultrasonic, Ferroelectric & Freq. Control; 55 (2008) 2298.Google Scholar
13 Wixforth, A. J. Assoc. Lab. Autom. 11 (2006) 399.Google Scholar
14 Pearton, S.J. Norton, D.P. Ip, K., Heo, Y.W. and Steiner, T.; Progress in Mater. Sci. 50 (2005) 293.Google Scholar
15 Water, W. and Chu, S.Y.; Mater. Lett. 55 (2002) 62.Google Scholar
16 Kim, H.W. and Kim, N.H.; Phys. Stat. Sol.(a). 201 (2004) 235.Google Scholar
17 Du, X.Y. Fu, Y.Q. Tan, S.C. Luo, J.K. Flewitt, A.J. Milne, W.I. Lee, D.S. Maeng, S. Kim, S.H. Park, N.M. Choi, Y.J. Park, J. and Choi, Y.J.; Appl. Phys. Lett. 93 (2008) 094105.Google Scholar
18 Du, X.Y. Fu, Y.Q. Luo, J.K. Flewitt, A.J. Milne, W.I. J. Appl. Phys. 105, 024508 (2009).Google Scholar
19 Lee, D.S., Luo, J.K., Fu, Y.Q. et al. J. Nanosci. & Nanotechnol. 9 (2008) 4626.Google Scholar
20 Dang, W.L. Fu, Y.Q. Luo, J.K. Flewitt, A.J. and Milne, W.I.; Superlattice & Microstr. 42, 89 (2007).Google Scholar
21 Du, X.Y. Swanwick, M. Fu, Y.Q., Luo, J.K. et al. ; J. Micromech. Microeng. 19, 035016 (2009).Google Scholar
22 Brown, A.B. Smith, C.G. and Rennie, A.R.; Phys. Rev. E63 (2000) 16305.Google Scholar
23 Du, X. Y., Fu, Y. Q., Luo, J.K., Flewitt, A.J. and Milne, W.I.; 1st Int. Conf. on Nanomanufacturing, Singapore, July 2008.Google Scholar
24 Kawai, A. and Suzuki, K.; Jpn. J. Appl. Phys. 45 (2006) 5429.Google Scholar
25 Buchine, B.A. Hughes, W.L. Degertekin, F.L. and Wang, Z.L.; Nano. Lett 6 (2006) 1155.Google Scholar
26 Shu, Y. Xue, D.F.; 4th Int. Conf. on technol. advance of thin film & Surf. coatings; Singapore, Jul. 2008, pp. 92.Google Scholar
27 Lee, D.S. Fu, Y.Q. Maeng, S. Du, X.Y. Luo, J.K. Flewitt, A.J. Park, N.M. Kim, S.H. Choi, Y.J. Park, J. and Milne, W.I.; et al. Int. Electron Device Meeting 2007, Washington, USA, 10-12, Dec. 2007.Google Scholar
28 Renken, J. Dahint, R. Grunze, M. and Josse, F. Anal. Chem., 68 (1996) 176.Google Scholar
29 Martin, F. Newton, M. I. McHale, G. Melzak, K.A. Gizeli, E. Biosens. Bioelectron 19 (2004) 627.Google Scholar