Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:35:57.100Z Has data issue: false hasContentIssue false

Zirconium Mediated Hydrogen Outdiffusion from p-GaN

Published online by Cambridge University Press:  03 September 2012

E. Kaminska
Affiliation:
Institute of Electron Technology, Al.Lotnikow 46, Warsaw, Poland, [email protected].
A. Piotrowska
Affiliation:
Institute of Electron Technology, Al.Lotnikow 46, Warsaw, Poland, [email protected].
A. Barcz
Affiliation:
Institute of Electron Technology, Al.Lotnikow 46, Warsaw, Poland, [email protected]. Institute of Physics PAS, Warsaw, Poland
J. Jasinski
Affiliation:
Institute of Experimental Physics, Warsaw University, Warsaw, Poland
M. Zielinski
Affiliation:
Institute of Physics PAS, Warsaw, Poland
K. Golaszewska
Affiliation:
Institute of Electron Technology, Al.Lotnikow 46, Warsaw, Poland, [email protected].
R.F. Davis
Affiliation:
Department of Material Science and Eng., NCSU, Raleigh, NC 27695-7907, USA
E. Goldys
Affiliation:
SMPCE, Macquarie University, Sydney NSW, Australia
K. Tomsia
Affiliation:
SMPCE, Macquarie University, Sydney NSW, Australia
Get access

Abstract

We have shown that Zr-based metallization can effectively remove hydrogen from the p-type GaN subsurface, which eventually leads to the formation of an ohmic contact. As the release of hydrogen starts at ∼900°C, the thermal stability of the contact system is of particular importance. The remarkable thermal behavior of the ZrN/ZrB2 metallization is associated to the microstructure of each individual Zr-based compound, as well as to the interfacial crystalline accommodation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Walle, C.G. Van de, Johnson, N.M., in Semiconductors and Semimetals 57 (Academic Press, 1999), Chap.4.Google Scholar
2. Pearton, S. J., Lee, J. W., in Semiconductors and Semimetals 61 (Academic Press, 1999), Chap.10.Google Scholar
3. Neugebauer, J., Walle, C.G. Van de, J. Appl. Phys. 85, 3003 (1999).Google Scholar
4. Murakami, M., Koide, Y., Critical Rev. Sol. State Mat. 23, 1 (1998).Google Scholar
5. Suzuki, M., Kawakami, T., Arai, T., Kobayashi, S., Koide, Y., Uemura, T., Shibata, N., Murakami, M., Appl. Phys. Lett. 74, 275 (1999).Google Scholar
6. Pearton, S.J., Bendi, S., Jones, K. S., Krishnamoorthy, V., Wilson, R. G., Karlicek, R. F. Jr., Stall, R. A., Appl. Phys. Lett. 69, 1879 (1996).Google Scholar
7. Erickson, J. W., Gao, Y., Wilson, R. G., Mat. Res. Soc. Symp. Proc. Vol.395, 363 (1996).Google Scholar
8. Gotz, W., Johnson, N. M., Walker, J., Bour, D. P., Street, R. A., Appl. Phys. Lett. 68, 667 (1996).Google Scholar
9. Krusin-Elbaum, L., Wittmer, M., Ting, C-Y., Cuomo, J.J., Thin Solid Films 104, 81 (1983).Google Scholar