Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T05:19:10.024Z Has data issue: false hasContentIssue false

What Controls Temperature Dependence of Yield Stress in L12-Ordered Intermetallic Compounds?

Published online by Cambridge University Press:  09 February 2015

Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan
Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The temperature dependence of yield stress and the associated dislocation dissociation in L12 intermetallic compounds are investigated in order to check the feasibility of the classification of L12 intermetallic compounds so far made in terms of the planarity of core structures of partial dislocations with b = 1/2<110> and 1/3<112> on {111} and {001} glide planes. In contrast to what is believed from the classification, the motion of APB-coupled dislocations is evidenced to give rise to the rapid decrease in yield stress at low temperatures for Pt3Al. In view of the fact that rapid decrease in yield stress at low temperatures is also observed in Co3(Al,W) and Co3Ti in which APB-coupled dislocations are responsible for deformation, the SISF-type dissociation is not a prerequisite for the rapidly decreasing CRSS for slip on (111) and the relative magnitudes of the APB energy on (111) and the SISF energy on (111) cannot be a primary factor that determines the type of the temperature dependence of CRSS for L12 compounds. The importance of the CSF energy as a factor determining the type of the temperature dependence of yield stress for L12 compounds through the changes in the planarity of the core structure of the APB-coupled partial dislocation with bp = ½[1$\overline 1$0] is discussed in the light of experimental evidence obtained from Pt3Al.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Veyssière, P., and Saada, G., in Nabarro, F.R.N., and Duesbery, M.S. (Eds.), Dislocations in Solids, Vol. 10, Elsevier, Amsterdam, 253 (1996).Google Scholar
Pope, D.P., and Ezz, S.S., Intl. Metals Rev. 29, 136 (1984).Google Scholar
Liu, C.T., and Pope, D.P., in Westbrook, J. H. and Fleischer, R. L. (Eds.), Intermetallic Compounds Principles and Practice Vol. 2,, John Wiley & Sons, Chichester, 17 (1995).Google Scholar
Vitek, V., and Paidar, V., in Hirth, J.P., (ed.), Dislocations in Solids, Vol. 14, Elsevier, Amsterdam, 441 (2008).Google Scholar
Wee, D.M., and Suzuki, T., Trans. Japan Inst. Metals 20, 634 (1979).CrossRefGoogle Scholar
Wee, D.M., Noguchi, O., Oya, Y., and Suzuki, T., Trans. Japan Inst. Metals 21, 237 (1980).CrossRefGoogle Scholar
Wee, D.M., Pope, D.P., and Vitek, V., Acta Metall. 32, 829 (1984).CrossRefGoogle Scholar
Heredia, F.E., Tichy, G., Pope, D.P., and Vitek, V., Acta Metall. 37, 2755 (1989).CrossRefGoogle Scholar
Oya-Semiya, Y., Shinoda, T., and Suzuki, T., Mater. Trans. 37, 1464 (1996).CrossRefGoogle Scholar
Paidar, V., Pope, D.P., and Yamaguchi, M., Scripta Metall. 15, 1029 (1981).CrossRefGoogle Scholar
Yamaguchi, M., Paidar, V., Pope, D.P., and Vitek, V., Phil. Mag. A 45, 867 (1982).CrossRefGoogle Scholar
Paidar, V., Yamaguchi, M., Pope, D.P., and Vitek, V., Phil. Mag. A 45, 883 (1982).CrossRefGoogle Scholar
Paidar, V., Pope, D.P., and Vitek, V., Acta Metall. 32, 435 (1984).CrossRefGoogle Scholar
Tichy, G., Vitek, V., and Pope, D.P., Phil. Mag. A 53, 467 (1986).CrossRefGoogle Scholar
Flinn, P.A., Trans. Metal. Soc. AIME 218, 145 (1960).Google Scholar
Yoo, M.H., Scripta Metall. 20, 915 (1986).CrossRefGoogle Scholar
Paxton, A.T., Electron Theory in Pettifor, D.G. and Cottrell, A.H. (Eds.), Alloy Design, Institute of Materials, London, 158 (1992).Google Scholar
Gornostyrev, Y.N., Kontsevoi, Y., Freeman, A.J., Katsnelson, M.I., Trefilov, A.V., and Lichtenshtein, A.I., Phys. Rev. B 70, 014102 (2004).CrossRefGoogle Scholar
Okamoto, N.L., Oohashi, T., Adachi, H., Kishida, K., Inui, H., and Veyssiere, P., Phil. Mag. 28, 3667 (2011).CrossRefGoogle Scholar
Inui, H., and Okamoto, N.L., MRS Symp. Proc., 1295, 405 (2011).CrossRefGoogle Scholar
Okamoto, N.L., Hasegawa, Y., Hashimoto, W., and Inui, H., Phil. Mag. 93, 60 (2013).CrossRefGoogle Scholar
Okamoto, N.L., Inomoto, M., Adachi, H., Takebayashi, H., and Inui, H., Phil. Mag. 94, 1327 (2014).CrossRefGoogle Scholar
Ngan, A.H.W., Jones, I.P., and Smallman, R.E., Phil. Mag. A65, 1003 (1992).CrossRefGoogle Scholar
Ngan, A.H.W., Jones, I.P., and Smallman, R.E., Phil. Mag. A66, 55 (1992).CrossRefGoogle Scholar
Wee, D. M., Pope, D. P., and Vitek, V., Acta Metall. 32, 829 (1984).CrossRefGoogle Scholar
Heredia, F. E., Tichy, G., Pope, D. P., and Vitek, V., Acta Metall. 37, 2755 (1989).CrossRefGoogle Scholar
Oya-Seimiya, Y., Shinoda, T., and Suzuki, T., Mater. Trans. JIM 37, 1464 (1996).CrossRefGoogle Scholar
Kontsevoi, O. Y., Gornostyrev, Y. N., Maksyutov, A. F., Khromov, K. Y., and Freeman, A. J., Metall. Mater. Trans. A36, 559 (2005).CrossRefGoogle Scholar
Jax, Kratochv.P, P., and Haasen, P., Acta Metall. 18, 237 (1970).Google Scholar
Paxton, A. T., and Sun, Y. Q., Philos. Mag. A78, 85 (1998).Google Scholar
Liu, J. B., Johnson, D. D., and Smirnov, A. V., Acta Mater. 53, 3601 (2005).CrossRefGoogle Scholar