Published online by Cambridge University Press: 21 March 2011
The energetics of the interaction of the <100>{010} edge dislocation in NiAl with early 3d transition metal (TM) impurities was studied using the ab initio real-space tight-binding LMTO-recursion method with 20,000 atom clusters and up to 1,000 non-equivalent atoms in the dislocation core. The coordinates of the atoms in the core were determined within the Peierls-Nabarro (PN) model with restoring forces determined from full-potential LMTO total energy calculations. TM impurities were then placed in different substitutional positions near the dislocation core. For most positions studied, the interaction between impurities and the dislocation is found to be repulsive (dislocation friction). However, when the impurity is in the position close to the central atom of the dislocation core, the interaction becomes strongly attractive, thus causing dislocation locking. Since the size misfit between the Al atom and the substituting TM atom is very small, this locking cannot be explained by elastic (or size misfit) mechanisms; it has an electronic nature and is caused by the formation of the preferred bonding between the electronic states of the impurity atom and the localized electronic states appearing on the central atom of the dislocation core. The calculated results are then discussed in the scope of experimental data on solid solution hardening in NiAl.