Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T13:58:26.105Z Has data issue: false hasContentIssue false

Towards Label-free Detection of Charged Macromolecules Using Field-effect-based Structures: Scaling Down from Capacitive EIS Sensor over ISFET to Nano-scale Devices

Published online by Cambridge University Press:  01 February 2011

Michael J. Schoening
Affiliation:
[email protected], University of Applied Sciences Aachen & Research Centre Juelich, Laboratory for Chemical Sensors and Biosensors, Ginsterweg 1, 52428 Juelich, Juelich, NRW, 52428, Germany, +49/2461-9932315, +49/2461-993235
Maryam H. Abouzar
Affiliation:
[email protected], Aachen University of Applied Sciences & Research Centre Juelich, Laboratory for Chemical Sensors and Biosensors, Juelich, NRW, 52428, Germany
Sven Ingebrandt
Affiliation:
[email protected], Research Centre Juelich, ISG2, Juelich, NRW, 52425, Germany
Johannes Platen
Affiliation:
[email protected], Aachen University of Applied Sciences & Research Centre Juelich, Laboratory for Chemical Sensors and Biosensors, Juelich, NRW, 52428, Germany
Andreas Offenhaeusser
Affiliation:
[email protected], Research Centre Juelich, ISG2, Juelich, NRW, 52425, Germany
Arshak Poghossian
Affiliation:
[email protected], Aachen University of Applied Sciences & Research Centre Juelich, Laboratory for Chemical Sensors and Biosensors, Juelich, NRW, 52428, Germany
Get access

Abstract

The possibility of a label-free electrical detection of charged macromolecules using semiconductor field-effect sensors offers a new approach for the development of DNA chips with fast and direct electrical readout. A deep understanding of the adsorption and interaction of charged biomolecules onto charged surfaces is of great interest also for the fundamental understanding of many key physiological processes. In the present work, two types of field-effect sensors, namely a capacitive EIS (electrolyte-insulator-semiconductor) structure and an ISFET (ion-sensitive field-effect transistor) have been utilised for monitoring layer-by-layer adsorption of polyelectrolytes as well as for the DNA immobilisation and hybridisation detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 de-los-Santos-Alvarez, P., Lobo-Castanon, M. Jesus, Miranda-Ordieres, A.J., TunonBlanco, P., Anal. Bioanal. Chem. 378, 104 (2004).Google Scholar
2 Fritz, J., Cooper, E.B., Gaudet, S., Sorger, P.K., Manalis, S.R., PNAS 99, 14142 (2002).Google Scholar
3 Uslu, F., Ingebrandt, S., Mayer, D., Böcker-Meffert, S., Odenthal, M., Offenhäusser, A., Biosens. Bioelectron. 19, 1723 (2004).Google Scholar
4 Sakata, T., Kamahori, M., Miyahara, Y., Jpn. J. Appl. Phys. 44, 2854 (2005).Google Scholar
5 Sakata, T., Matsumoto, S., Nakajima, Y., Miyahara, Y., Jpn. J. Appl. Phys. 44, 2860 (2005).Google Scholar
6 Sakata, T., Miyahara, Y., Biosens. Bioelectron. 21, 827 (2005).Google Scholar
7 Pouthas, F., Gentil, C., Cote, D., Bockelmann, U., Appl. Phys. Lett. 84, 1594 (2004).Google Scholar
8 Pouthas, F., Gentil, C., Cote, D., Zeck, G., Straub, B., Bockelmann, U., Phys. Rev. E 70, 031906 (2004).Google Scholar
9 Ohtake, T., Hamai, C., Uno, T., Tabata, H., Kawai, T., Jpn. J. Appl. Phys. 43, L1137 (2004).Google Scholar
10 Uno, T., Ohtake, T., Tabata, H., Kawai, T., Jpn. J. Appl. Phys. 43, L1584 (2004).Google Scholar
11 Kim, D.-S., Jeong, Y.-T., Lyu, H.-K., Park, H.-J., Kim, H.S., Shin, J.-K., Choi, P., Lee, J.-H., Lim, G., Ishida, M., Jpn. J. Appl. Phys. 42, 4111 (2003).Google Scholar
12 Shin, J.-K., Kim, D.-S., Park, H.-J., Lim, G., Electroanalysis 16, 1912 (2004).Google Scholar
13 Dashiell, M.W., Kalambur, A.T., Leeson, R., Roe, K.J., Rabolt, J.F., Kolodzey, J., in Proc. IEEE Lester Eastman Conf., Delaware, 2002, p. 259.Google Scholar
14 Kim, D.-S., Jeong, Y.-T., Lyu, H.-K., Park, H.-J., Shin, J.-K., Choi, P., Lee, J.-H., Lim, G., Biosens. Bioelectron. 20, 69 (2004).Google Scholar
15 Kim, D.-S., Park, H.-J., Jung, H.-M., Shin, J.-K., Jeong, Y.-T., Choi, P., Lee, J.-H., Lim, G., Jpn. J. Appl. Phys. 43, 3855 (2004).Google Scholar
16 Blackburn, G.F., in Biosensors: Fundamentals and Applications, edited by Turner, A.P.F., Karube, I., Wilson, G.S. (Oxford University Press, Oxford, 1987) p. 481.Google Scholar
17 Bergveld, P., Biosens. Bioelectron. 6, 55 (1991).Google Scholar
18 Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A., Schöning, M.J., Sens. Actuators B 111–112, 470 (2005).Google Scholar
19 Decher, G., Eckle, M., Schmitt, J., Struth, B., Layer-by-layer assembled multicomposite films, Curr. Opin. Coll. Interface Sci. 3, 32 (1988).Google Scholar
20 Schönhoff, M., Self-assembled polyelectrolyte multilayers, Curr. Opin. Coll. Interface Sci. 8, 86 (2003).Google Scholar
21 Ingebrandt, S., Sakkari, M.-R., Han, Y., Poghossian, A., Schöning, M.J., Offenhäusser, A., in Book of Abstracts of the 3rd Int. Symp. on Sensor Science, Jülich (Germany), 2005, p. 162.Google Scholar
22 Platen, J., Poghossian, A., Schöning, M.J., Sensors, (2006), in press.Google Scholar
23 Poghossian, A., Platen, J., Schöning, M.J., Electrochim. Acta 51, 838 (2005).Google Scholar
24 Poghossian, A., Ingebrandt, S., Platen, J., Schöning, M.J., Biocybernetics and Biomedical Engineering (2006), in press.Google Scholar