Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:09:39.050Z Has data issue: false hasContentIssue false

Tm-Er Codoping Al2O3 Thin Films: Activation by Annealing

Published online by Cambridge University Press:  01 February 2011

Zhisong Xiao
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
R. Serna
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
C. N. Afonso
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
I. Vickridge
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
Get access

Abstract

Amorphous aluminum oxide (Al2O3) thin films codoped with Tm3+ and Er3+ have been prepared by pulsed laser deposition. A broad emission band with a full-width half maximum (FWHM) up to 230 nm was observed in Tm-Er codoped film. The spectrum shows two peaks located at 1540 nm corresponding to Er3+ emission and 1640 nm due to Tm3+ emission. The luminescence intensity dependence on the annealing temperature was investigated. It is shown that the annealing temperature and energy transfer between Tm3+ and Er3+ ions play an important role in the definition of the luminescent response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Institut de NanoSciences de Paris, UMR 7588 du CNRS, Universite de Paris 6 et 7, 2, Place Jussieu, 75251 Paris Cedex 05, France

References

1. Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
3. Kani, J., Hattori, K., Jinno, M., Aisawa, S., Sakamoto, T., and Oguchi, K., Electron. Lett. 35, 321 (1999).Google Scholar
4. Tanabe, S., Sugimoto, N., Ito, S., and Hanada, T., J. Lumin. 87, 670 (2000).Google Scholar
5. Komukai, T., Yamamoto, T., Sugawa, T., and Miyajima, Y., IEEE J. Quantum Electron. 31, 1880 (1995).Google Scholar
6. Naftaly, M., Shen, S., and Jha, A., Appl. Opt. 39, 4979 (2000).Google Scholar
7. Serna, R., Castro, M. J. de, Chaos, J. A., Suarez-Garcia, A., Afonso, C. N., Fernandez, M., and Vickridge, I., J. Appl. Phys. 90, 5120 (2001).Google Scholar
8. Suarez, A.-Garcia, Serna, R., Castro, M. J. de, Afonso, C. N., and Vickridge, I., Appl. Phys. Lett. 84, 2151 (2004).Google Scholar
9. Carnall, W.T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968).Google Scholar
10. Seo, S. Y., Shin, J. H., Bae, B. S., Park, N., Penninkhof, J. J. and Polman, A., Appl. Phys. Lett. 82, 3445 (2003).Google Scholar
11. Lee, M. B., Lee, J. H., Frederick, B. G., and Richardson, N. V., Surf. Sci. 448, L207 (2000).Google Scholar
12. Jeong, H., Oh, K., Han, S. R., Morse, T. F., Chem. Phys. Lett. 367, 507 (2003).Google Scholar