Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:24:29.564Z Has data issue: false hasContentIssue false

Time Resolved Photoluminescence of Cubic Mg Doped GaN

Published online by Cambridge University Press:  10 February 2011

R. Seitz
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
C. Gaspar
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
T. Monteiro
Affiliation:
University of Paderborn, Fachbereich Physik, Paderborn, Germany
E. Pereira
Affiliation:
University of Paderborn, Fachbereich Physik, Paderborn, Germany
B. Schoettker
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
T. Frey
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
D. J. As
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
D. Schikora
Affiliation:
University of Aveiro, Department of Physics, Aveiro, PORTUGAL, [email protected]
K. Lischka
Affiliation:
University of Paderborn, Fachbereich Physik, Paderborn, Germany
Get access

Abstract

Mg doped cubic GaN layers were studied by steady state and time resolved photoluminescence. The blue emission due to Mg doping can be decomposed in three bands. The decay curves and the spectral shift with time delays indicates donor-acceptor pair behaviour. This can be confirmed by excitation density dependent measurements. Furthermore temperature dependent analysis shows that the three emissions have one impurity in common. We propose that this is an acceptor level related to the Mg incorporation and the three deep donor levels are due to compensation effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Orton, J W, Semicond. Sci. Techonol. 10, 101(1995).10.1088/0268-1242/10/1/017Google Scholar
2. As, D.J., Simonsmeier, T., Schöttker, B., Frey, T., Schikora, D., Kriegseis, W., Burkhardt, W., Meyer, B.K., Appl. Phys. Lett. 73, 1835(1998)10.1063/1.122298Google Scholar
3. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T., and Henneberger, F., Phys. Rev. B54, R8381 (1996)10.1103/PhysRevB.54.R8381Google Scholar
4. Thomas, D., Hopfield, J., Augustyniak, W., Phys. Rev. 140 (IA), A202 (1965)10.1103/PhysRev.140.A202Google Scholar
5. Dean, P., Progress in Solid State Chem. 8, I (1973)10.1016/0079-6786(73)90004-6Google Scholar
6. Schmidt, T., Lischka, K., Zulehner, W., Phys. Rev. B45, 8989(1992)10.1103/PhysRevB.45.8989Google Scholar
7. Rarnirez-Flores, G., Navarro-Contreras, H., Lastras-Martfnez, A., Powell, R.C., and Greene, J.E., Phys. Rev. B50, 8433(1994)10.1103/PhysRevB.50.8433Google Scholar
8. Kaufimnann, U., Kunzer, M., Obloh, H., Maier, M., Manz, Ch., Ramakrishnan, A., Santic, B., Phys. Rev. B 59, 5561(1999)10.1103/PhysRevB.59.5561Google Scholar
9. Brandt, O., Group III Nitride Semiconductor Compounds - Physics and Application, II, 417–459, edited by B., Gil, Oxford Science Publications, Clarendon Press, Oxford (1998)Google Scholar
10. Eckey, L., Gfug, U., Hoist, J., Hoffmann, A., Schineller, B., Heime, K., Heuken, M., Schon, O., Beccard, R., J. Crys. Growth 189/190, 523 (1998)10.1016/S0022-0248(98)00344-3Google Scholar
11. As, D. J., Phys. Stat. Sol. (b) 210, 445(1998)10.1002/(SICI)1521-3951(199812)210:2<445::AID-PSSB445>3.0.CO;2-P3.0.CO;2-P>Google Scholar