Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:04:56.676Z Has data issue: false hasContentIssue false

Thermal and Electromigration Strain Distributions in 10 μm-Wide Aluminum Conductor Lines Measured by X-Ray Microdiffraction

Published online by Cambridge University Press:  10 February 2011

P.-C. Wang
Affiliation:
Department of Chemical Engineering, Materials Science and Mining Engineering, Columbia University, New York, NY 10027
G. S. Cargill III
Affiliation:
Department of Chemical Engineering, Materials Science and Mining Engineering, Columbia University, New York, NY 10027
I. C. Noyan
Affiliation:
IBM Research, Yorktown Heights, NY 10598
E. G. Liniger
Affiliation:
IBM Research, Yorktown Heights, NY 10598
C.-K. Hu
Affiliation:
IBM Research, Yorktown Heights, NY 10598
K. Y. Lee
Affiliation:
IBM Research, Yorktown Heights, NY 10598
Get access

Abstract

X-ray microdiffraction was applied to study the thermal and electromigration strains in 10 μm-wide Al conductor lines with 10 μm spatial resolution. X-rays were collimated either by pinholes or by tapered glass capillaries to form x-ray microbeams. Measurements were made in a symmetric-reflection geometry so that the strains normal to the sample surface could be examined at different positions along the conductor lines. Results of thermal strain measurements show that the SiO2 passivation plays an important role in limiting relaxation of in-plane compressive thermal stresses in the Al lines, but that the passivation is not effective in confining the overall thermal expansion of the Al line along the film normal. Electromigration strain measurements show that a linear stress gradient developed within the first hour of electromigration. The magnitude of the stress gradient changed little until fast stress relaxations occurred near the anode end of the line. Possible mechanisms are discussed in light of these observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murakami, M., Kuan, T.-S., and Blech, I. A., Treatise on Materials Science and Technology, (Academic Press Inc., New York 1982), Vol. 24, p. 163.Google Scholar
[2] Doerner, M. F. and Nix, W. D., CRC Critical Reviews in Solid State and Materials Sciences, 14, 225 (1988).Google Scholar
[3] Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
[4] Klema, J., Pyle, R., and Domangue, E., Proc. 22nd Rel. Phys. Symp. (IEEE, Las Vegas, 1984), p.l.Google Scholar
[5] Curry, J., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G., and Thomas, A., Proc. 22nd Rel. Phys. Symp. (IEEE, Las Vegas, 1984), p. 6.Google Scholar
[6] Besser, P. R., Sauter Mack, A., Fraser, D. B., and Bravman, J. C., J. Electrochem. Soc. 140, 1769 (1993).Google Scholar
[7] Blech, I. A. and Meiran, E. S., Appl. Phys. Lett. 11, 263 (1967).Google Scholar
[8] Sanchez, J. E. Jr, Morris, J. W. Jr, and Lloyd, J. R., J. Metals 42, 41 (1990).Google Scholar
[9] Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1990), p. 221.Google Scholar
[10] Hinode, K., Asano, I., Ishiba, T., and Homma, Y., J. Vac. Sci. Technol. B8, 495 (1990).Google Scholar
[11] Greenebaum, B., Sauter, A. I., Rinn, A. P., and Nix, W. D., Appl. Phys. Lett. 58, 1845 (1991).Google Scholar
[12] Moske, M. A., Ho, P. S., Mikalsen, D. J., Cuomo, J. J., and Rosenberg, R., J. Appl. Phys. 74, 1716 (1993).Google Scholar
[13] Yeo, I.-S., Anderson, S. G. H., Ho, P. S., and Hu, C.-K., J. Appl. Phys. 78, 953 (1995).Google Scholar
[14] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. 427, 35 (1996).Google Scholar
[15] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., to be submitted to J. Appl. Phys.Google Scholar
[16] Hoel, P. G., Elementary Statistics., 3rd ed. (New York, John Wiley & Sons, 1971).Google Scholar
[17] Korhonen, M. A., Black, R. D. and Li, C.-Y., J. Appl. Phys. 69, 1748 (1991).Google Scholar
[18] Lahiri, S. K., J. Appl. Phys. 41, 3172 (1970).Google Scholar
[19] Chaudhari, P., J. Appl. Phys. 45, 4339 (1974).Google Scholar
[20] Blech, I. A. and Tai, K. L., Appl. Phys. Lett. 30, 387 (1977).Google Scholar
[21] Blech, I. A. and Herring, , Appl. Phys. Lett. 29, 131 (1976).Google Scholar