Article contents
Theoretical and Experimental Study of Barium Zinc-Cadmium Tantalate-based Microwave Dielectrics
Published online by Cambridge University Press: 01 February 2011
Abstract
Single-phase Ba(Cd1/3Ta2/3)O3 ceramics have been produced using conventional powder processing methods. In our initial investigations, 2wt% ZnO powder was added to act as a sintering aid since a high-density ceramic was not formed from solid-state diffusion alone. The resulting Ba(Cd0.327Zn0.006Ta2/3)O3 material sintered at 1550° C exhibits a dielectric constant of ∼33 and loss tangent of <5×10−5 at 2 GHz. In our more recent work, we have used boron as a sintering aid to facilitate sintering at temperatures as low as 1300° C, enhance the structural quality and improve the microwave properties of Ba(Cd1/3Ta2/3)O3 dielectrics. TEM results indicate that the liquid sintering mechanism is an important factor for boron concentrations exceeding 0.5wt%, while a point defect mechanism plays the dominant role at lower boron concentrations. The presence of superstructure peaks and splitting of the (220) and (214) peaks in X-ray diffraction spectra are direct evidence for the distortion from cubic symmetry as a result of Cd and Ta ordering on the B-site.
Ab-initio electronic structure calculations within the local density functional approximation have been used to give insight into the unusual properties of this class of materials. In both Ba(Zn1/3Ta2/3)O3 and Ba(Cd/3Ta2/3)O3, the conduction band maximum and valence band minimum are composed of mostly weakly itinerant Ta 5d-and Zn-3d/Cd-4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and possibly inherently lower intrinsic microwave loss than comparable ionic materials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 1
- Cited by