Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:26:11.787Z Has data issue: false hasContentIssue false

Ternary Cu3BiY3 (Y = S, Se, and Te) for Thin-Film Solar Cells

Published online by Cambridge University Press:  28 August 2013

Mukesh Kumar
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Clas Persson
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway.
Get access

Abstract

Very recently, Cu3BiS3 has been suggested as an alternative material for photovoltaic (PV) thin-film technologies. In this work, we analyze the electronic and optical properties of Cu3BiY3 with the anion elements Y = S, Se, and Te, employing a first-principles approach within the density function theory. We find that the three Cu3BiY3 compounds have indirect band gaps and the gap energies are in the region of 1.2–1.7 eV. The energy dispersions of the lowest conduction bands are small, and therefore the direct gap energies are only ∼0.1 eV larger than the fundamental gap energies. The flat conduction bands are explained by the presence of localized Bi p-states in the band gap region. Flat energy dispersion implies a large optical absorption, and the calculations reveal that the absorption coefficient of Cu3BiY3 is larger than 105 cm−1 for photon energies of ∼2.5 eV. The absorption is stronger than other Cu-S based materials like CuInS2 and Cu2ZnSnS4. Thereby, Cu3BiY3 has the potential to be a suitable material in thin-film PV technologies.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wadia, C., Alivisatos, A. P., and Kammen, D. M., Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle Scholar
Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., and Noufi, R., Prog. Photovolt: Res. Appl. 16, 235 (2008).CrossRefGoogle Scholar
Siebentritt, S., Igalson, M., Persson, C., and Lany, S., Prog. Photovolt: Res. Appl. 18, 390 (2010).CrossRefGoogle Scholar
Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).CrossRefGoogle Scholar
Wu, X., Sol. Energy 77, 803 (2004).CrossRefGoogle Scholar
Katagiri, H., Thin Solid Films 480, 426 (2005).CrossRefGoogle Scholar
Todorov, T. K., Reuter, K. B., and Mitzi, D. B., Adv. Mater. 11, E156 (2010).CrossRefGoogle Scholar
Kumar, M. and Persson, C., Appl. Phys. Lett. 102, 062109 (2013).CrossRefGoogle Scholar
Colombara, D., Peter, L. M., Hutchings, K., Rogers, K. D., Schäfer, S., Dufton, J. T. R., and Islam, M. S., Thin Solid Films 520, 5165 (2012).CrossRefGoogle Scholar
Estrella, V., Nair, M. T. S., and Nair, P. K., Semicond. Sci. Technol. 18, 190 (2003).CrossRefGoogle Scholar
Nair, P. K., Huang, L., Nair, M. T. S., Hailin, H., Meyers, E. A., and Zingaro, R. A., J. Mater. Res. 12, 651 (1997).’CrossRefGoogle Scholar
Gerein, N. J. and Haber, J. A., Chem. Mater. 18, 6297 (2006).CrossRefGoogle Scholar
Mesa, F., Dussan, A., and Gordillo, G., Phys. Status Solidi C 7, 917 (2010).Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
Persson, C. and Ferreira da Silva, A., Appl. Phys. Lett. 86, 231912 (2005).CrossRefGoogle Scholar
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 73, 045112 (2006).CrossRefGoogle Scholar
Kocman, V. and Nuffield, E. W., Acta Crystallogr. B29, 2528 (1973).CrossRefGoogle Scholar
In Ref. 8, the T- and R-points are incorrectly described.Google Scholar
Yu, L., Kokenyesi, R. S., Keszler, D. A., and Zunger, A., Adv. Energy Mater. 3, 43 (2013).CrossRefGoogle Scholar
Temple, D. J., Kehoe, A. B., Allen, J. P., Watson, G. W., and Scanlon, D. O., J. Phys. Chem. C 116, 7334 (2012).CrossRefGoogle Scholar
Kumar, M. and Persson, C., J. Renewable Sustainable Energy 5, 0311616 (2013).Google Scholar
Choi, S.G., Chen, R., Persson, C., Kim, T.J., Hwang, S.Y., Kim, Y. D., and Mansfield, L. M., Appl. Phys. Lett. 101, 261903 (2012).CrossRefGoogle Scholar
Zhao, H. and Persson, C., Thin Solid Films 519, 7508 (2011).CrossRefGoogle Scholar