Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:57:56.298Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Third Order Nonlinear Optical Materials

Published online by Cambridge University Press:  25 February 2011

L. P. Yu
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA-90089;
M. Chen
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA-90089;
L. R. Dalton
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA-90089;
X. F. Cao
Affiliation:
Department of Electrical Engineering and Physics, University of Southern California, Los Angeles, CA-90089.
J. P. Jiang
Affiliation:
Department of Electrical Engineering and Physics, University of Southern California, Los Angeles, CA-90089.
R. W. Hellwarth
Affiliation:
Department of Electrical Engineering and Physics, University of Southern California, Los Angeles, CA-90089.
Get access

Abstract

New polymers incorporating a variety of electroactive moeities with defined π-electron conjugation lengths have been synthesized and characterized by degenerate four wave mixing (DFWM) techniques. The χ(3)/α values for these materials varied from 10−12 to 10−13 esu cm. This work has identified several promising structures with nonlinear optical activity including organometallic and purely organic materials. The preparation of composite materials has also permitted the measurement of χ(3)/α as a function of the electroactive unit concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heeger, A. J., Orenstein, J. and Ulrich, D. R.. Eds. Nonlinear Optical Properties of Polymers. Symposium Proceedings; Materials Research Society, 1989, vol. 109.Google Scholar
2. Yang, L., Dorsiville, R., Wang, Q. Z., Zou, W. K., Ho, P. P., Yang, N. L. Alfano, R. R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C.. J. Opt. Soc. Amer. B 1989. vol. 6, 753.CrossRefGoogle Scholar
3. Jenekhe, S. A., Lo, S. K., and Flom, S. R.. Appl. Phys. Lett. 1989, 54, 2524.CrossRefGoogle Scholar
4. de Melo, C. P. and Silby, R.. Chem. Phys. Lett. 1988, 140, 537.CrossRefGoogle Scholar
5. Heflin, J. R., Wong, K. Y., Khamir, O. Z. and Garito, A. F.. Phys. Rev., 1988, B38 1573.CrossRefGoogle Scholar
6. Yu, L. P. and Dalton, L. R.. J. Amer. Chem. Soc, 1989, 111 8699.CrossRefGoogle Scholar
7. Prassad, P. N., Perrin, E. and Samoc, M.. J. Chem. Phys., 1989, 91, 2360.CrossRefGoogle Scholar
8. Treibs, A. and Jacob, K.. Liebigs Ann. Chem., 1966, 699, 153.CrossRefGoogle Scholar
9. Place, D. A., Ferrara, G. P., Harland, J. J. and Dabrowiak, J. C.. J. Heterocyclic . Chem. 1980, 17, 439.CrossRefGoogle Scholar
10. Yu, L. P., Vac, R., Dalton, L. R. and Hellwarth, R. W.. SPIE proceedings, 1989, vol. 1147.Google Scholar
11. Chen, M., Yu, L. P. and Dalton, L. R.. (in preparation).Google Scholar
12. Cao, X. F., Jiang, J. P., Bloch, D. P., Hellwarth, R. W., Yu, L. P., and Dalton, L. R.. J. Appl. Phys., 1989, 65, 5012.CrossRefGoogle Scholar