Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:30:35.870Z Has data issue: false hasContentIssue false

Synchrotron X-ray Studies of Molecular Ordering in Confined Liquids

Published online by Cambridge University Press:  21 March 2011

Hyunjung Kim
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A
O. H. Seeck
Affiliation:
IFF, FZ Jülich GmbH, 52425 Jülich, Germany
D. R. Lee
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A
I. D. Kaendler
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A
D. Shu
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A
J. K. Basu
Affiliation:
Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U. S. A
S. K. Sinha
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A
Get access

Abstract

X-ray specular and off-specular reflectivity studies have been carried out to study the density modulations in liquids confined between two smooth silicon mirrors. The special technique as well as the advantages of using high energy and high brilliance synchrotron x-ray beams for carrying out such experiments will be discussed. Results will be presented on the ordering of octamethyl-cyclotetrasiloxane (OMCTS) as a function of the confining pressure, where we find evidence of layering as the gap is decreased from macroscopic down to a few nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Granick, S., Physics Today, July 1999, p.26 and references therein.Google Scholar
2. Bhushan, B., Israelachvili, J.N. and Landman, U., Nature 374, 607 (1995); L. Demirel and S. Granick, Phys. Rev. Lett. 77, 2261 (1996).Google Scholar
3. Thompson, P.A., Grest, G.S. and Robbins, M.O., Phys. Rev. Lett. 68, 3448 (1992); J.P. Gao, W.D. Luidtke and U. Landman, J. Phys. Chem. B 101, 4013 (1997); J.P. Gao et al., Science 270, 605 (1995).Google Scholar
4. Yu, C.-J., Richter, A.G., Datta, A., Durbin, M.K. and Dutta, P., Phys. Rev. Lett. 82, 2326 (1999).Google Scholar
5. Reichert, H., Klein, O., Dosch, H., Honkimäki, V., Lippmann, T., and Reiter, G., Nature 408, 839 (2000).Google Scholar
6. Klein, J. and Kumacheva, E., J. Chem. Phys. 108, 6996 (1998).Google Scholar